用常微分方程组逼近中一类立型微分差分方程组  

A Class of Vertical Differential Difference Equations is Approximated by Ordinary Differential Equations

在线阅读下载全文

作  者:何洋 HE Yang(Basis Department,Chuzhou City Vocation College,Chuzhou 239000,China)

机构地区:[1]滁州城市职业学院基础部,安徽滁州239000

出  处:《吉林化工学院学报》2021年第11期97-102,共6页Journal of Jilin Institute of Chemical Technology

基  金:安徽省职业与成人教育学会2018年度教育教学研究规划重点课题(AGZ18001);安徽省职业与成人教育学会2020年度教育教学研究规划一般课题(azcg162)。

摘  要:针对常微分方程组逼近一类中立型微分差分方程组的问题,当前普遍研究主要集中在一类中立型微分差分方程组内常数相加所得结果小于0的条件下,常微分方程组的零解渐进稳定性能够逼近所示的一类中立型微分差分方程组时,滞量的充分必要条件,却忽略常数相加所得结果等于0的条件下(即第一临界条件下),滞量的充分必要条件.因此研究用常微分方程组逼近一类中立型微分差分方程组方法,从一类中立型微分差分方程组内常数相加所得结果小于0和等于0两种条件下,分别研究常微分方程组的零解渐进稳定性能够逼近所示的一类中立型微分差分方程组时滞量的充分必要条件.Ordinary differential equations,approximation for a class of neutral differential difference equations of the problem,the current popular studies have focused on a class of neutral differential difference equations in addition of constant results under the condition of less than zero,zero solution asymptotic stability of ordinary differential equations can be shown in close to a class of neutral differential difference equations,delay is sufficient and necessary conditions.However,the necessary and sufficient conditions of hysteresis are ignored under the condition that the sum of constants is equal to 0(i.e.under the first critical condition).So the ordinary differential equations with approximation method,a class of neutral differential difference equations from constant within a class of neutral differential difference equations together,the result is less than 0 and is equal to zero,under the condition of two kinds of ordinary differential equations,respectively study the stability of zero solutions of can approach is shown in a class of neutral differential difference equations of delay sufficient and necessary conditions.

关 键 词:常微分 逼近 中立型 微分差分 滞量 第一临界条件 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象