基于前反馈神经网络分析优化Saccharomyces cerevisiae L9富硒条件  被引量:1

Optimization of selenium enrichment conditions of Saccharomyces cerevisiae L9 based on pre-feedback neural network analysis

在线阅读下载全文

作  者:张丹丹 黄鑫磊 程卫东[1] ZHANG Dandan;HUANG Xinlei;CHENG Weidong(College of Food Science and Technology,Shihezi University,Shihezi 832000;Key Laboratory of Industrial Biotechnology of Ministry of Education,Jiangnan University,Wuxi 214122)

机构地区:[1]石河子大学食品学院,石河子832000 [2]江南大学工业生物技术教育部重点实验室,无锡214122

出  处:《中国食品添加剂》2021年第12期36-42,共7页China Food Additives

基  金:四兵团重点领域科技攻关计划项目(2020AB14);八师石河子市重点领域科技攻关项目(2020GY07);五师科技计划项目(20GY01)。

摘  要:研究以前期分离的一个株富硒能力较强的Saccharomyces cerevisiae L9为材料,利用正交设计与前反馈神经网络结合遗传算法优化其富硒能力。优化结果为:葡萄糖2%、复合氮源为硫酸铵0.35%和蛋白胨1.65%、pH为5.4、接种量为5%、装样量为86mL,初始硒质量浓度17μg/mL,温度30℃,转速180r/min,培养时间48小时,富硒量947μg/g。筛选的菌种具有工业化生产潜质,可作为开发富硒葡萄酒的菌种制剂。In this study,a strain of Saccharomyces cerevisiae L9 with strong selenium-enrichment ability isolated in the previous period was used as the material and its selenium-enrichment ability was optimized by orthogonal design and pre-feedback neural network combined with genetic algorithm. The optimization results are as follows :glucose 2%,the compound nitrogen source is 0.35%,ammonium sulfate and peptone 1.65%,pH is 5.4,the inoculation amount is 5%,the loading amount is 86 mL,the initial selenium concentration is 17 μg/mL,and the temperature is 30℃,The rotation speed was 180 r/min,the incubation time was 48 hours,and the selenium content was 947μg/g.The selected strains can be used as strain preparations for the development of selenium-enriched wine.

关 键 词:富硒酵母 筛选 条件优化 神经网络结合遗传算法(BPNN-GA) 富硒葡萄酒 

分 类 号:TS202.1[轻工技术与工程—食品科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象