检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王云鹏 司海平[1] 宋佳珍 万里 WANG Yun-peng;SI Hai-ping;SONG Jia-zhen;WAN Li(College of Information and Management Science,Henan Agricultural University,Zhengzhou,Henan 450046,China)
机构地区:[1]河南农业大学信息与管理科学学院,河南郑州450046
出 处:《食品与机械》2021年第12期127-131,共5页Food and Machinery
基 金:国家科技资源共享服务平台项目(编号:NCGRC-2020-57);河南省重大公益专项(编号:201300210300)。
摘 要:目的:解决目前中国苹果分级分类大部分情况下仍需要进行人工筛选的问题。方法:采用基于多尺度变换的红外与可见光图像融合算法对所采集到的苹果的可见光图像和红外图像进行融合,得到缺陷特征更加直观的融合图像,对该图像进行图像的预处理操作得到二值化图像数据集,再采用卷积神经网络的AlexNet模型对之前的苹果表面缺陷数据集进行训练、验证和检测。结果:该检测方法在所制作的苹果表面缺陷数据集上对完好果、缺陷果、花萼/果梗、花萼/果梗加缺陷识别的平均准确度为99.0%,其中对花萼/果梗的识别准确率可达95.8%,对完好果、缺陷果和花萼/果梗加缺陷的识别准确率高达100%。结论:该方法对苹果表面缺陷的检测精度比较高,可以满足对苹果的在线分级的需求。Objective:To solve the current situation of manual screening in most cases of Chinese apple classification.Methods:The infrared and visible image fusion algorithm based on multi-scale transformation was used to fuse the collected visible image and infrared image of the apple to obtain a more intuitive fusion image with defect characteristics,and performed image preprocessing operations on the image to obtain a binary value.The image data set was transformed,and then the AlexNet model of the convolutional neural network was used to train,verify and detect the previous Apple surface defect data set.Results:The detection method has an average accuracy of 99.0%for intact fruit,defective fruit,calyx/stalk,calyx/stalk plus defect on the produced apple surface defect data set,and the average accuracy was 99.0%.The recognition accuracy rate could reach 95.8%,and the recognition accuracy rate of intact fruit,defective fruit and calyx/fruit stem plus defect was as high as 100%.Conclusion:This method has a relatively high detection accuracy for apple surface defects,which can meet the demand for online classification of apples.
关 键 词:图像融合 缺陷检测 多尺度变换 卷积神经网络 图像处理
分 类 号:S226.5[农业科学—农业机械化工程] TP391.41[农业科学—农业工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7