检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁驷[1] 袁全 YUAN Si;YUAN Quan(Department of Civil Engineering,Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry,Tsinghua University,Beijing 100084,China)
机构地区:[1]清华大学土木工程系,土木工程安全与耐久教育部重点实验室,北京100084
出 处:《工程力学》2022年第1期21-26,共6页Engineering Mechanics
基 金:国家自然科学基金项目(51878383,51378293)。
摘 要:该文以一阶运动方程为例,利用其非自伴随性质,构建了新型的凝聚检验函数,进而提出了一套高性能Galerkin有限单元——凝聚单元。该单元为无条件稳定的单步法单元,对于次多项式单元,其端结点位移和速度均可达到O(h^(2m+2))阶的超高收敛性,比常规Galerkin单元的结点精度高2阶。采用此单元,该文进而实现了无需额外的结点修正技术的自适应步长的高效算法。该文对这一研究进展做一简介,并给出初步算例验证了该法的可行性和有效性。Taking the first-order equations of motion as the model problem,a novel condensed test function is constructed by using its non-self-adjoint property and then a new type of high-performance Galerkin finite element,called condensed element,is proposed.The proposed element,being of one-step type and unconditionally stable,can produce O(h^(2m+2)) super-convergence for displacement and velocity at end-nodes of elements of degree,which is two orders higher than traditional elements.Further,an efficient adaptive time step-size algorithm is achieved without additional nodal displacement recovery technique being used.The paper gives a brief report of this initial and promising study with some preliminary numerical examples given to show the feasibility and effectiveness of the proposed approach.
关 键 词:GALERKIN有限元法 运动方程 非自伴问题 凝聚单元 自适应步长
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38