运动方程自适应步长求解的高性能Galerkin时程单元初探  被引量:5

AN INITIAL STUDY OF A NOVEL HIGH-PERFORMANCE GALERKIN FINITE ELEMENT AND APPLYING FOR THE ADAPTIVE TIME-STEP METOD IN SOLVING MOTION EQUATION

在线阅读下载全文

作  者:袁驷[1] 袁全 YUAN Si;YUAN Quan(Department of Civil Engineering,Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry,Tsinghua University,Beijing 100084,China)

机构地区:[1]清华大学土木工程系,土木工程安全与耐久教育部重点实验室,北京100084

出  处:《工程力学》2022年第1期21-26,共6页Engineering Mechanics

基  金:国家自然科学基金项目(51878383,51378293)。

摘  要:该文以一阶运动方程为例,利用其非自伴随性质,构建了新型的凝聚检验函数,进而提出了一套高性能Galerkin有限单元——凝聚单元。该单元为无条件稳定的单步法单元,对于次多项式单元,其端结点位移和速度均可达到O(h^(2m+2))阶的超高收敛性,比常规Galerkin单元的结点精度高2阶。采用此单元,该文进而实现了无需额外的结点修正技术的自适应步长的高效算法。该文对这一研究进展做一简介,并给出初步算例验证了该法的可行性和有效性。Taking the first-order equations of motion as the model problem,a novel condensed test function is constructed by using its non-self-adjoint property and then a new type of high-performance Galerkin finite element,called condensed element,is proposed.The proposed element,being of one-step type and unconditionally stable,can produce O(h^(2m+2)) super-convergence for displacement and velocity at end-nodes of elements of degree,which is two orders higher than traditional elements.Further,an efficient adaptive time step-size algorithm is achieved without additional nodal displacement recovery technique being used.The paper gives a brief report of this initial and promising study with some preliminary numerical examples given to show the feasibility and effectiveness of the proposed approach.

关 键 词:GALERKIN有限元法 运动方程 非自伴问题 凝聚单元 自适应步长 

分 类 号:TU311.3[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象