检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘清堂[1] 李小娟[2] 谢魁 常瑀倍 郑欣欣 LIU Qingtang;LI Xiaojuan;XIE Kui;CHANG Yubei;ZHENG Xinxin(Hubei Research Center for Educational Informationization,Central China Normal University,Wuhan Hubei 430079;Faculty of Artificial Intelligence in Education,Central China Normal University,Wuhan Hubei 430079;The Research Laboratory for Digital Learning,The Ohio State University,Columbus,OH,USA,43210)
机构地区:[1]华中师范大学湖北省教育信息化研究中心,湖北武汉430079 [2]华中师范大学人工智能教育学部,湖北武汉430079 [3]俄亥俄州立大学数字化学习研究实验室,美国俄亥俄州43210
出 处:《电化教育研究》2022年第1期71-78,85,共9页E-education Research
基 金:2020年国家自然科学基金“数据驱动的学习动机诊断模型及应用研究”(项目编号:61977035);2020年教育部人文社会科学研究规划基金“基于远程课堂学习情绪计算的同步课堂教学干预机制研究”(项目编号:20YJA880009)。
摘 要:多模态学习分析(MMLA)是智能化探究有效学习发生机理的关键技术。研究对国外37篇实证文献的任务情境设计和MMLA的四个过程进行系统综述,梳理出多模态数据集的生成场域多以发展认知为主,少关注情感价值的培育;学习标签注释以计算科学指导为主,缺乏不同时间尺度行为关联的理论指导;预测结果多关注学习行为表现,轻心智发展的过程解释;多模态数据分析反馈聚焦个性化学习支持,忽视决策支持。未来实证研究发展应聚焦有效学习与情感体验,融合计算科学和认知带理论,协同人机优势提供反馈支持,开展MMLA系统开发者和利益相关者的深度对话,不断迭代设计与优化分析系统和应用模式,有效促进“人工智能+教育”的发展。Multimodal learning analysis(MMLA)is a key technology for intelligently exploring the mechanism of effective learning.This study conducts a systematic review of 37 foreign empirical literature on task scenario design and the four processes of MMLA.It is found that the generative fields of multimodal datasets are mainly focused on developing cognition and less on cultivating affective values.Learning label annotation is mainly guided by computational science,but lacks theoretical guidance on behavioral correlation at different time scales.The prediction results pay more attention to the performance of learning behaviors than to the explanation of the process of mental development.Feedback from multimodal data analysis focuses on personalized learning support and neglects decision support.Future empirical studies should pay attention to effective learning and affective experience,integrate computational science and cognitive band theory,provide feedback support in collaboration with human-machine advantage,conduct in-depth dialogues between MMLA system developers and stakeholders,continuously iterate the design and optimize the analysis system and application models to effectively promote the development of"AI+Education".
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145