检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王毅[1] 方志策 牛瑞卿[1] 彭令[2] WANG Yi;FANG Zhice;NIU Ruiqing;PENG Ling(Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan 430074,China;China Institute of Geo-Environment Monitoring,Beijing 100081,China)
机构地区:[1]中国地质大学(武汉)地球物理与空间信息学院,武汉430074 [2]中国地质环境监测院,北京100081
出 处:《地球信息科学学报》2021年第12期2244-2260,共17页Journal of Geo-information Science
基 金:国家自然科学基金项目(61271408、41602362);智能机器人湖北省重点实验室(武汉工程大学)开放基金项目(HBIR202002)~。
摘 要:滑坡灾害成因机理复杂、影响因素众多,深度学习作为当前人工智能领域的热点,能够更好地模拟滑坡灾害的形成并准确预测潜在的斜坡。为了挖掘深度学习在滑坡易发性的应用潜能,本文构建了一维、二维和三维的滑坡数据表达形式,并提出3种基于卷积神经网络模型(Convolutional Neural Networks, CNN)的滑坡易发性分析处理框架:基于CNN分类器、基于CNN与逻辑回归的融合和基于CNN集成,最后以江西省铅山县为研究对象进行验证,结果表明:所有基于CNN的易发性模型都能够获得准确且可靠的滑坡易发性分析结果。其中,基于二维数据的CNN模型在所有单分类器中预测精度最高,为78.95%。此外,二维CNN特征提取能够显著提升逻辑回归的预测精度,其准确率提升7.9%。最后,异质集成策略能够大幅度提升基于CNN分类器的滑坡预测精度,其准确率提升4.35%~8.78%。The formation mechanism of landslide disasters is complicated and there are many influencing factors. It is imperative to explore a low-cost and highly applicable method to manage and prevent landslide disasters. As a hot spot in the current artificial intelligence field, deep learning can better simulate the formation of landslide disasters and accurately predict potential slopes. Thus, to explore the application potential of deep learning, this paper constructs one-dimensional, two-dimensional, and three-dimensional forms of landslide data,and then introduces three Convolutional Neural Networks(CNN)-based landslide susceptibility analysis frameworks, including CNN-based classifiers, integrated models, and ensemble models. The proposed deep learning methods were applied to Yanshan County, Jiangxi Province for experiments. 16 landslide influencing factors were first selected for modelling based on the geomorphological, hydrological, and geological environment conditions of the study area. These factors include altitude, aspect, distance to faults, land use,lithology, normalized difference vegetation index, plan curvature, profile curvature, rainfall, distance to rivers,distance to roads, slope, soil, stream power index, sediment transport index, and topographic wetness index.Then, the multi-collinearity analysis and relief-F algorithm were used to analyze and screen the influencing factors. All CNN-based methods were constructed and validated based on several statistical measures of accuracy, root mean square error, mean absolute error, sensitivity, specificity, and the receiver operation characteristic curve. Finally, the susceptibility value of each pixel in the study area was predicted based on the CNN-based methods, and the entire study areas were reclassified into five susceptibility categories: very low,low, moderate, high, and very high. The factor analysis results show that the plan curvature, profile curvature,stream power index, and sediment transport index are redundant factors and should be removed fr
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145