太阳系界面动态磁场问题的H(curl,Ω)有限元最优误差估计  

The Optimal Error Estimates for the Dynamic Magnetic Field of Solar Interface Problem by H(curl, Ω) Finite Element Methods

在线阅读下载全文

作  者:姚昌辉 申俊文 赵艳敏 YAO Changhui;SHEN Junwen;ZHAO Yanmin(School of Statistics and Big Data,Zhengzhou College of Finance and Economics,Zhengzhou 450000,China;School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China;School of Science,Xuchang University,Xuchang 461000,China)

机构地区:[1]郑州财经学院统计与大数据学院,河南郑州450000 [2]郑州大学数学与统计学院,河南郑州450001 [3]许昌学院数理学院,河南许昌461000

出  处:《应用数学》2022年第1期200-207,共8页Mathematica Applicata

基  金:Supported by the National Natural Science Foundation of China (11871441;11971416)。

摘  要:本文利用具有最优插值逼近的界面棱边元来逼近太阳系界面动态磁场问题,采用界面对齐的三角剖分对区域进行划分且跳转接口被δ-带包围.利用界面棱边元的性质,得到了关于动态磁场的最优误差估计,收敛结果为O(τ+h),其中τ和h分别是时间和空间方向的剖分步长.最后,对太阳系界面模型的动态磁场进行了数值模拟.In this paper, the interface edge element is utilized to approach the dynamic magnetic field of solar interface problem, which has optimal interpolation approximation.And, the domain is partitioned by interface-aligned triangulation with jump interface surrounded by δ-strip. Based on properties of interface edge element, the optimal error estimates of the dynamic magnetic field is obtained with convergent rate O(τ + h), whereτ, h are subdivision step in time and space, respectively. At last, numerical simulations of the dynamic magnetic field of solar interface model is shown.

关 键 词:界面棱边元 太阳系界面 最优误差估计 动态磁场问题 

分 类 号:O242.21[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象