检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王斌[1] 罗莉 刘金沧 黄小川[1] 雷雳 WANG Bin;LUO Li;LIU Jincang;HUANG Xiaochuan;LEI Li(Surveying and Mapping Institute of Lands and Resource Department Guangdong Province,Guangzhou 510550,China;Surveying and Mapping Engineering Company of Guangdong Province,Guangzhou 510670,China)
机构地区:[1]广东省国土资源测绘院,广东广州510550 [2]广东省测绘工程公司,广东广州510670
出 处:《测绘与空间地理信息》2022年第1期40-44,共5页Geomatics & Spatial Information Technology
基 金:广东省自然资源厅科技项目(GDZRZYKJ-ZC2020003,GDZRZYKJ2020004)资助。
摘 要:采用粤西2018—2019年优于0.5 m地理国情监测影像,结合2018年矢量化地表覆盖分类成果,使用稀疏降噪自编码神经网络深度学习方法,首先选取BJ、GF、ZY等各类高分辨率遥感影像训练生成多传感器训练模型;其次利用PCA主成分分析提取样本数据最大特征,实现样本数据白化降维;最后采用tanh函数作为神经元激活函数,选取softmax回归分类器逐层训练深度网络模型,并计算该模型总体损失函数,求出损失函数最小值作为该模型最优参数解。试验表明:1)该方法在城乡接合部查全率优于88%,建成区查全率优于92%,农村地区查全率优于80%,准确度优于68%;2)结合语义分割对稀疏降噪自编码神经网络能够产生较好的局部极值,网络结构达到较好泛化性能,减少了高分辨率遥感影像特征过拟合现象。Combined with the vectorized land cover classification results in 2018,this paper uses the better than 0.5 m geographic national conditions monitoring images from 2018 to 2019 in Western Guangdong.It uses the sparse noise reduction self-encoding neural network deep learning method to first select BJ/GF/ZY and other types of high resolution remote sensing images to generate a multi-sensor training model.Secondly,Principal Component Analysis(PCA)is used to extract the largest features of the sample data to achieve whitening and dimensionality reduction of the sample data.Finally,the tanh function is used as the neuron activation function,and the softmax regression classifier is selected to train the deep network layer by layer,calculate the overall loss function of the model,and find the minimum value of the loss function as the optimal parameter solution of the model.Experiments show that:1)This method has a recall rate of better than 88%in the urban-rural fringe,better than 92%in built-up areas,better than 80%in rural areas,and better than 68%in accuracy.2)Combined with semantic segmentation,the sparse noise reduction self-encoding neural network can produce better local extrema,and the network structure achieves better generalization performance,reducing the over-fitting phenomenon of high-resolution remote sensing image features.
关 键 词:语义分割 稀疏降噪自编码 主成分分析 神经网络 变化检测
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.14