检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋宗礼[1] 张文婷 张津丽[1] JIANG Zong-li;ZHANG Wen-ting;ZHANG Jin-li(College of Computer Science,Beijing University of Technology,Beijing 100124,China)
出 处:《计算机工程与设计》2022年第1期150-156,共7页Computer Engineering and Design
摘 要:综合考虑异质信息网络具有的复杂性和异质性的特点,提出一种异质网中基于图卷积神经网络(heterogeneous graph convolution neural network embedding,HeGCNE)的链路预测方法。针对经典图卷积神经网络逐层传递规则的不足,提出改进的逐层传递规则,对异质节点进行表征学习,融合对抗学习优化节点表征;在此基础上,利用节点的哈达玛积构造连边表征,将连边表征放入基于梯度提升树算法的二分类器,解决异质网络的链路预测问题。实验结果表明,改进后的方法可以有效提高链路预测的准确性和稳定性。To address the problem of complexity and heterogeneity in heterogeneous information networks,a link prediction algorithm based on graph convolution neural network embedding in heterogeneous networks(HeGCNE)was proposed.To overcome shortcomings of the multi-layer rule of classical graph convolution neural network,an improved multi-layer rule was proposed to learn the embeddings of heterogeneous nodes.The quality of the node embeddings was improved through adversarial learning.Based on these,the Hadamard product of the two node embeddings was used to construct the edge embeddings,and the edge embeddings were put into the binary classifier based on the gradient boosting decision tree algorithm.Therefore,the link prediction problem in heterogeneous networks was solved.Experimental results show that the improved algorithm has higher prediction accuracy and stability.
关 键 词:异质信息网络 链路预测 图卷积神经网络 对抗学习 梯度提升树
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30