检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周祥 常俊[1] 武浩[1] ZHOU Xiang;CHANG Jun;WU Hao(School of Information Science and Engineering,Yunnan University,Kunming 650091,China)
出 处:《计算机工程与设计》2022年第1期231-236,共6页Computer Engineering and Design
基 金:国家自然科学基金项目(61162406);云南省省教育厅科研基金项目(2019J0007)。
摘 要:针对现有依靠穿戴设备、雷达和视频图像人体行为感知的方法对环境要求高,成本高,且不利于保护隐私等问题,提出一种基于信道状态信息无设备且低成本的日常行为识别方法。通过商用WiFi设备采集原始CSI数据,在无需信号进行去噪处理的情况下通过提取原始CSI最大程度能提高识别精度的三阶累积量特征,应用基于互信息的特征选择算法(MIFS)对特征进行筛选,将筛选得到的特征子集输入进粒子群优化算法(PSO)优化过参数的支持向量机(SVM)分类器中以测量性能。实验结果表明,该方法在不同环境下对不同日常动作的平均识别率达到了96.1%,验证了该方法用于行为识别能获得较高的准确率和鲁棒性。The existing methods rely on wearable devices,radar and video image human behavior perception,high environmental requirements,the cost is high and it is not conducive to protecting privacy and other issues.Raw CSI data were collected through commercial WiFi equipment,the third-order cumulant feature that could maximize the recognition accuracy was extracted by extracting the original CSI without signal denoising processing,and the feature selection algorithm based on mutual information(MIFS)was applied to the feature perform screening,and the selected feature subsets were inputted into the particle swarm optimization algorithm(PSO)optimized support vector machine(SVM)classifier to measure performance.Experimental results show that the average recognition rate of proposed method for different daily actions in different environments reaches 96.1%,it is verified that the method can obtain high accuracy and robustness for behavior recognition.
关 键 词:信道状态信息 行为识别 三阶累积量 互信息 特征选择 粒子群优化 支持向量机
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7