MPSR-MKSVM电力负荷预测综合优化策略  被引量:15

Comprehensive optimization strategy of power load forecasting based on MPSR-MKSVM

在线阅读下载全文

作  者:徐蕙 陈平[1] 李海涛[1] 王瀚秋[1] 秦皓 陈少坤 Xu Hui;Chen Ping;Li Haitao;Wang Hanqiu;Qin Hao;Chen Shaokun(State Grid Beijing Electric Power Company,Beijing 100031,China.;Beijing Henghua Longxin Data Technology Co.,Ltd.,Beijing 100088,China)

机构地区:[1]国网北京市电力公司,北京100031 [2]北京恒华龙信数据科技有限公司,北京100088

出  处:《电测与仪表》2022年第1期77-83,共7页Electrical Measurement & Instrumentation

基  金:基于营配调数据的煤改电专题分析服务项目(HHLX-S-2GS19-0009)。

摘  要:针对电力负荷在线预测问题,结合多变量相空间重构以及多核函数LS-SVM(Least Squares Support Vector Machine),提出一种基于滑动窗口策略与改进人工鱼群算法(Artificial Fish Swarm Algorithm)的短期电力负荷在线预测综合优化方法。利用多变量相空间重构还原真实电力系统动力学特性;将核函数进行排列组合,从而将组合核函数的构造问题转换为权值系数的优化问题,进一步将延迟时间、嵌入维数、LS-SVM参数以及核函数权值作为整体参数向量,利用混沌自适应人工鱼群算法对训练数据预测精度的适应度函数进行优化,从而得到最优的预测模型参数,最后通过滑动时窗策略将得到的预测模型对短期电力负荷进行在线预测,结果证明了提出方法的有效性。Aiming at the problem of online power load forecasting,combining with multiple variable phase space reconstruction and least squares support vector machine(LS-SVM),a comprehensive optimization method for short-term power load forecasting based on sliding window strategy and the improved artificial fish swarm algorithm is proposed in this paper.Firstly,the multiple variable phase space reconstruction is utilized to restore the dynamic characteristics of the real power system,and then,the kernels are arranged and combined to transform the construction of the combined kernels into the optimization of the weight coefficients.Furthermore,the delay time,embedding dimension,LS-SVM parameters and the weight of the kernel function are taken as the whole parameter vectors,and the adaptive artificial fish swarm algorithm is utilized to optimize the fitness function of the prediction accuracy of the training data,so as to obtain the optimal parameters of the prediction model.Finally,the online forecasting of the short-term power load is conducted by sliding time window strategy,and the results prove the effectiveness of the proposed method.

关 键 词:相空间重构 支持向量机 滑动窗口 电力负荷 在线预测 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象