一类新冠肺炎的流行病学模型稳定性研究  

Study on the stability of an epidemiological model of a type of COVID-19

在线阅读下载全文

作  者:金德泉[1,2] 陈芃合 王凯明 Jin Dequan;Chen Penghe;Wang Kaiming(School of Mathematics and Information Science,Guangxi University,Nanning 530004,China;Guangxi center of Applied Mathematics,Guangxi University,Nanning 530004,China;School of science,mathematics and information science,Chang'an University,Xi'an 710061,China)

机构地区:[1]广西大学数学与信息科学学院,广西南宁530004 [2]广西大学广西应用数学中心,广西南宁530004 [3]长安大学理学院数学与信息科学系,陕西西安710061

出  处:《纯粹数学与应用数学》2021年第4期436-449,共14页Pure and Applied Mathematics

基  金:国家自然科学基金(11661010)。

摘  要:为了研究新型冠状病毒肺炎(简称:新冠肺炎,COVID-19)疫情的传播规律,根据其特点建立一类描述新冠肺炎传播动力学机制的SEIS传染病模型,并应用奇异摄动理论和稳定性理论,给出了新冠肺炎传播的无病平衡点和地方病平衡点全局渐近稳定性的条件,最后通过数值仿真的方法进行分析验证.In order to study the spread of COVID-19, a kind of SEIS model describing the dynamic mechanism of the propagation of COVID-19 was established according to its characteristics. The conditions for the global stability of the disease-free equilibrium and the endemic equilibrium for the propagation of COVID-19 were provided by using the singular perturbation theory and the stability theory. Finally, numerical simulation was used to analyze and verify the results.

关 键 词:奇异摄动理论 全局渐近稳定 流行病 

分 类 号:O175.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象