基于历史查询概率的K-匿名哑元位置选取算法  被引量:8

The K-Anonymous Dummy Location Selection Algorithm Based on Historical Query Probability

在线阅读下载全文

作  者:杨洋 胡晓辉[1] 杜永文[1] YANG Yang;HU Xiaohui;DU Yongwen(School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学电子与信息工程学院,兰州730070

出  处:《计算机工程》2022年第2期147-155,共9页Computer Engineering

基  金:国家自然科学基金(11461038,61163009);甘肃省高等学校创新基金(2020A-033);甘肃省科技支撑计划项目(144NKCA040)。

摘  要:基于历史查询概率的哑元位置隐私保护机制存在匿名度低、隐匿区域小和位置分布不均匀的问题。提出K-匿名哑元位置选取(K-DLS)算法用于位置隐私保护。通过综合考虑匿名集的位置离散度和零查询用户,增强哑元匿名集的隐私性。利用熵度量选择哑元位置,使得哑元匿名集的熵值最优,并根据位置偏移距离优化匿名结果,增加匿名集的位置离散度。仿真结果表明,K-DLS算法的哑元匿名集离散度优于DLS、DLP、Enhanced;LP等算法,能够有效提高用户位置的隐私保护效果。The dummy-based location privacy mechanism using historical query probability suffers from low anonymity,small coverage area and imbalanced location distribution.To address the problem,a K-anonymous dummy-based locationselection algorithm is proposed for position privacy protection.The privacy of dummy anonymous set is enhanced by comprehensively considering the location dispersion of anonymous set and zero-query users.The algorithm selects the location of dummy through entropymeasure to make the entropy of the anonymous dummy set optimal.Then the anonymous result is optimized based on the offset distance of the location,and the location dispersion of the constructed anonymous set is improved.The simulation results show that the proposed algorithm displays a higher location dispersion degree of the dummybased anonymous set than DLS,DLP,Enhanced_DLP and other algorithms.It significantly improves the performance of location privacy protection for users.

关 键 词:基于位置的服务 位置隐私 哑元位置选取 零查询用户 K-匿名 地理位置分布 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象