检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈佳卉 王友国[1] 翟其清[1] CHEN Jia-hui;WANG You-guo;ZHAI Qi-qing(School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出 处:《计算机技术与发展》2022年第1期79-84,共6页Computer Technology and Development
基 金:国家自然科学基金资助项目(62071248);江苏省研究生科研创新计划(KYCX20_0730)。
摘 要:关于脑电信号中的噪声处理问题一直是脑-机接口(BCI)领域的重点研究方向,通常认为噪声是有害的,所以针对脑电信号中的噪声处理往往以降噪或消噪为主。但是根据随机共振(SR)的思想,在非线性系统中噪声往往能增强信号处理,而脑电信号恰好具有非线性的特征,因此提出运用高斯噪声提高运动想象脑电信号的识别率。通过在脑电信号中加入独立的高斯噪声,将原始训练集与添加噪声的训练集串联起来增加训练样本量,考虑训练样本量增加与否和噪声加入的阶段(训练或/和测试);通过共空间模式(CSP)和小波包变换(WPT)提取分类特征,并用K近邻(KNN)算法进行分类。实验结果表明,只要加入适当强度的噪声,均可提高系统的分类准确率,出现随机共振现象;增加训练样本量的同时在训练集和测试集中加入适当强度相同的噪声,系统最大平均分类准确率相比不加噪声时增加9.28个百分点;K近邻算法的最大平均分类准确率相比决策树(DT)和支持向量机(SVM)而言整体更高,体现出K近邻算法的优越性和可靠性。The problem of noise processing in EEG signal has always been a key research direction in the field of brain-computer interface(BCI),and it is usually considered that noise is harmful,so the noise processing in EEG signal often focus on noise reduction or cancellation.However,according to the principle of stochastic resonance(SR),noise can enhance signal processing in nonlinear systems,and EEG signals have nonlinear characteristics.Therefore,Gaussian noise is used to improve the recognition rate of motor imaginary EEG signals.Adding independent Gaussian noise to EEG signals,the original training set connects with the noise-added training set to increase the training sample size.Considering whether training sample size increases or not and the stage of noise addition(training or/and testing).The classification features are extracted by common spatial pattern(CSP)and wavelet packet transform(WPT),and classified by K-nearest neighbor(KNN).The experimental results show that the accuracy of classification system can be improved and appear stochastic resonance as long as add the appropriate noise intensity.When increasing the training sample size and adding the appropriate noise of the same intensity to the training set and test set,the maximum average classification accuracy of system is 9.28 percentage points higher than that without noise.The maximum average classification accuracy of K-nearest neighbor is higher than that of decision tree(DT)and support vector machine(SVM),which reflects the superiority and reliability of K-nearest neighbor.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30