检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黎洪键 刘若霆 袁平之[1,2] Hong Jian LI;Ruo Ting LIU;Ping Zhi YUAN(School of Mathematic,South China Normal University,Guangzhou 510631,P.R.China;Guangdong Experimental High school,Guangzhou 510375,P.R.China)
机构地区:[1]华南师范大学数学科学学院,广州510631 [2]广东实验中学,广州510375
出 处:《数学学报(中文版)》2022年第1期89-114,共26页Acta Mathematica Sinica:Chinese Series
摘 要:设Z,N分别是全体整数和正整数的集合,M_(m)(Z)表示Z上m阶方阵的集合.本文运用Fermat大定理的结果证明了:对于取定的次数n∈N,n≥3,二阶矩阵方程X^(n)+Y^(n)=λ^(n)I(λ∈Z,λ≠0,X,Y∈M_(2)(Z),且X有一个特征值为有理数)只有平凡解;利用本原素因子的结果得到二阶矩阵方程X^(n)+Y^(n)=(±1)^(n)I(n∈N,n≥3,X,Y∈M_(2)(Z))有非平凡解当且仅当n=4或gcd(n,6)=1且给出了全部非平凡解;通过构造整数矩阵的方法,证明了下面的矩阵方程有无穷多组非平凡解:■n∈N,X^(n)+Y^(n)=λ^(n)I(λ∈Z,λ≠0,X,Y∈M_(n)(Z));X^(3)+Y^(3)=λ^(3)I(λ∈Z,λ≠0,m∈N,m≥2,X,Y∈M_(m)(Z)).Let Z and N be the set of all integers and positive integers,respectively.Mm(Z)be the set of m×m matrix over Z where m∈N.In this paper,by using the result of Fermat’s Last Theorem,we show that the following second-order matrix equation has only trivial solutions:X^(n)+Y^(n)=λ^(n)I(λ∈Z,λ≠0,X,Y∈M_(2)(Z)),where X has an eigenvalue that is a rational number and n∈N,n≥3;By using the result of primitive divisors,we show that the second-order matrix equation X^(n)+Y^(n)=(±1)^(n) I(n∈N,n≥3,X,Y∈M_(2)(Z))has nontrivial solutions if and only if n=4 or gcd(n,6)=1 and all nontrivial solutions are given;By constructing integer matrix,we show that the following matrix equation has an infinite number of nontrivial solutions:■n∈N,X^(n)+Y^(n)=λ^(n)I(λ∈Z,λ≠0,X,Y∈M_(n)(Z));X^(3)+Y^(3)=λ^(3)I(λ∈Z,λ≠0,m∈N,m≥2,X,Y∈M_(m)(Z)).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.229.52