大噪声环境下前视声呐图像目标识别方法研究  被引量:2

Research on target recognition method of forward looking sonar image in large noise environment

在线阅读下载全文

作  者:王凯 秦丽萍 卢丙举 侯冬冬 经慧祥 WANG Kai;QIN Li-ping;LU Bing-ju;HOU Dong-dong;JING Hui-xiang(The 713 Research Institute of CSSC,Zhengzhou 450015,China;Henan Key Laboratory of Underwater Intelligent Equipment,Zhengzhou 450015,China)

机构地区:[1]中国船舶集团有限公司第七一三研究所,河南郑州450015 [2]河南省水下智能装备重点实验室,河南郑州450015

出  处:《舰船科学技术》2022年第1期125-130,共6页Ship Science and Technology

基  金:河南省高等学校重点科研项目(22A413003)。

摘  要:提出大噪声环境下前视声呐图像目标识别的研究方法,针对水下无人航行器(UUV)在近岸浅水区航行中由于前视声呐图像噪声较大,难以准确识别目标的问题,通过改进的中值滤波和Otus阈值检测算法,对前视声呐图像进行滤波和二值化。利用区域增长算法分割疑似目标区域图像,分别提取分割图像的长度、形状、方向、灰度均值和灰度能量中值等参数,利用支持向量机(SVM)的方法对这些图像参数训练和识别,结果表明该方法能够有效识别大噪声环境下的前视声呐图像目标。This paper proposes a research method for the target recognition of forward-looking sonar images in a large noise environment.Aiming at the problem that the underwater unmanned vehicle(UUV)is difficult to accurately identify the target due to the large noise of the forward-looking sonar image when the UUV sails in shallow waters near the shore.Through the improved median filter and Otus threshold detection algorithm,the forward-looking sonar image is filtered and binarized.The region growth algorithm is used to segment the image of the suspected target area,and the length,shape,direction,gray average value and gray energy segmentation value of the segmented iamge are separately extracted,and the support vector machine(SVM)method is used to train and recognize these image parameters.The results show that the method can effectively identify the forward-looking sonar image target in a large noise environment.

关 键 词:前视声呐图像 图像处理 特征提取 支持向量机 

分 类 号:U666.7[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象