基于改进自适应密度峰值算法的日负荷曲线聚类分析  被引量:11

Cluster analysis of daily load curves based on an improved self-adaptive density peak clustering algorithm

在线阅读下载全文

作  者:姚黄金 雷霞 付鑫权 胡益 YAO Huangjin;LEI Xia;FU Xinquan;HU Yi(College of Electrical and Electronic Information,Xihua University,Chengdu 610039,China)

机构地区:[1]西华大学电气与电子信息学院,四川成都610039

出  处:《电力系统保护与控制》2022年第3期121-130,共10页Power System Protection and Control

基  金:国家自然科学基金项目资助(51877181)。

摘  要:电力市场的逐步开放以及大量可再生能源的接入使用户具有更多的用电自由,导致电力用户类型多样化、用户间负荷特性差异逐渐增大、负荷数据的类簇分布情况复杂化。为解决传统聚类算法面对不均衡负荷数据集时聚类效果不佳以及缺乏自适应能力等问题,提出一种改进自适应密度峰值聚类(Improved self-adaptive Density Peak Clustering,ISDPC)算法。首先,基于K-最近邻(K-Nearest Neighbor,KNN)和相对密度的思想定义了一种新的密度度量方式。然后在决策图中拟合分段函数得到最优类簇数目。最后,通过构造加权KNN图改进样本分配策略。试验结果表明,与传统聚类算法相比,所提方法聚类结果更加精确、具备自适应能力、鲁棒性更强。The opening electricity market and the incremental penetration of renewable energy provide more consumption choices for users.This results in diversification of power user patterns,increasing differences of load characteristics and giving a complex distribution of load clusters.An improved self-adaptive density peak clustering(ISDPC)algorithm is proposed to ameliorate the clustering results and adaptive abilities of traditional clustering methods for unbalanced load data.First,a new density metric is defined based on the K-nearest neighbor(KNN)and relative density.Secondly,the optimal number of clusters is obtained by a fitting partition function obtained from the decision graph.Finally,the allocation of strategy is improved by a weighted KNN graph.The experimental results show that clustering results obtained from the proposed method perform better in accuracy,robustness,and adaptability。

关 键 词:负荷曲线聚类 密度峰值聚类 自适应 KNN 鲁棒性 

分 类 号:TM714[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象