检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黎光明 王幸君[1,2] 潘语熙 Li Guangming;Wang Xingjun;Pan Yuxi(School of Psychology,South China Normal University,Guangzhou 510631,China;Center for Studies of Psychological Application,South China Normal University,Guangzhou 510631,China)
机构地区:[1]华南师范大学心理学院,广州510631 [2]华南师范大学心理应用研究中心,广州510631
出 处:《统计与决策》2022年第3期50-55,共6页Statistics & Decision
基 金:广东省自然科学基金面上项目(2021A1515012516)。
摘 要:文章针对正态分布数据,对比Traditional方法、Bootstrap方法和MCMC方法在两侧面交叉设计(p×i×h)和两侧面嵌套设计(p×(i:h))下各个方差分量的估计精度,为实际应用提供参考。使用R软件模拟1000批数据,并在R软件上实现三种方法的方差分量及其变异量估计。结果表明:(1)相较于Traditional方法和MCMC方法,相同条件下,Bootstrap方法估计的方差分量及其变异量结果更为理想;(2)对于两侧面交叉设计和两侧面嵌套设计,在正态分布数据下,建议优先使用Bootstrap方法。Aiming at normal distribution data, this paper compares the estimation accuracy of each variance component of Traditional method, Bootstrap method and MCMC method under two-facet cross design(p × i × h) and two-facet nested design( p ×(i:h)), which provides a reference for practical application. R software is used to simulate 1000 batches of data, and the variance component and variance estimation of the three methods are realized on R software. The results are as follows:(1) Compared with Traditional method and MCMC method, the results of variance component and variation estimated by Bootstrap method are more ideal under the same conditions;(2) The Bootstrap method is recommended to be used in the case of normally distributed data for the two-facet cross design and two-facet nested design.
关 键 词:概化理论 方差分量估计 方差分量变异量估计 BOOTSTRAP方法 MCMC方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.113