基于数据挖掘技术的网络热门舆情分类研究  被引量:2

Research on the classification of network popular public opinions based on data mining technology

在线阅读下载全文

作  者:杨小艳 YANG Xiao-yan(College of Electronic&Information Engineering,Ankang University,Ankang 725000,Shaanxi Province,China)

机构地区:[1]安康学院电子与信息工程学院,陕西安康725000

出  处:《信息技术》2022年第2期59-63,68,共6页Information Technology

基  金:安康市科技计划项目(2018AK02-12)。

摘  要:以提升网络热门舆情分类准确率,降低分类时间为目标,提出了基于数据挖掘技术的网络热门舆情分类方法。将小波核函数和支持向量机结合构成小波模糊支持向量机,采用增量学习机制和贝叶斯分类算法建立增量贝叶斯分类算法,组成小波模糊支持向量机-增量贝叶斯分类算法解决测试样本易分类失误以及类条件独立假定性很难获取问题,通过计算待测样本和小波支持向量机之间的距离,实现网络热门舆情分类。经实验验证:类置信度较高时,文中方法分类准确率高,运行时间少,可快速分类网络热门舆情,且网络热门舆情分类结果的查全率以及查准率都在94%以上,分类精度较好。In order to improve the classification accuracy of network popular public opinion and reduce the classification time,this paper proposes the classification method of network popular public opinion based on data mining technology.The wavelet fuzzy support vector machine(wfsvm)is improved by using wavelet kernel function and support vector machines.The incremental Bayesian classification algorithm is obtained by using incremental learning mechanism which further forms the wavelet fuzzy support vector machine(wfsvm)-incremental Bayesian classification algorithm.This could solve the problems of easy classification error of test sample and difficulty of acquisition of class condition independence assumption.The distance between wavelet support vector machines is used to realize the network popular public opinion classification.The experiment results show that when the class confidence is high,the classification accuracy of the research method is high,and the running time of different test samples is low,which can quickly classify the network popular public opinion.Besides,the recall and precision of the network popular public opinion classification results are more than 94%,and the classification accuracy is good.

关 键 词:数据挖掘 网络热门舆情 小波核函数 支持向量机 朴素贝叶斯 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象