检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王旭辰 韩煜祺 唐林波[1] 邓宸伟[1] WANG Xuchen;HAN Yuqi;TANG Linbo;DENG Chenwei(Radar Research Lab,School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]北京理工大学信息与电子学院雷达技术研究所,北京100081
出 处:《信号处理》2022年第1期157-163,共7页Journal of Signal Processing
基 金:自然基金(91838303)。
摘 要:无人机技术和计算机视觉技术相结合,在民用和军用领域都有着广泛的需求,然而当前算法不能很好的适应无人机视角旋转、障碍物遮挡、目标尺度变化等特殊情况。根据实际的难点和挑战,提出了基于深度学习的无人机载平台多目标检测和跟踪算法。主要工作有:在检测方面,通过公开数据集和实际采集的大量数据,训练了基于Darknet53的检测网络作为检测器;在跟踪方面,使用Car-Reid数据集训练了一个残差网络提取目标外观信息,使用卡尔曼滤波提取目标运动信息,并通过一个融合公式将两个信息进行整合得到成本矩阵,最后由匈牙利匹配算法得到跟踪结果。在UAV123数据集和实测采集数据集上分别进行多组实验验证,得到本算法在视角旋转、目标尺度变化、障碍物遮挡情况下均能进行稳定检测跟踪的结论。The combination of UAV technology and computer vision technology has a wide range of requirements in the civil and military fields.However,the current algorithms can not adapt to the special conditions of UAV,such as rotation of view angle,obstacle occlusion,target scale change and so on.According to the practical difficulties and challenges,a multi-target detection and tracking algorithm based on deep learning is proposed.The main work is as follows:in the aspect of detection,the detection network based on darknet53 is trained as the detector through the public data set and a large amount of data actually collected;in the aspect of tracking,the car Reid data set is used to train a residual network to extract the appearance information of the target,the Kalman filter is used to extract the motion information of the target,and a fusion formula is used to integrate the two information Finally,the tracking result is obtained by Hungarian matching algorithm.Experiments are carried out on uav123 data set and actual data set respectively,and the conclusion is that the algorithm can detect and track stably under the conditions of rotation of view angle,change of target scale and occlusion of obstacles.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28