检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘宏利[1] 张晓杭 邵磊[1] 徐晓宁 孙文涛 李季[1] LIU Hong-li;ZHANG Xiao-hang;SHAO Lei;XU Xiao-ning;SUN Wen-tao;LI Ji(Tianjin Key Laboratory for Control Theory&Application in Complicated Systems,Tianjin University of Technology,Tianjin 300384,China)
机构地区:[1]天津理工大学天津市复杂系统控制理论及应用重点实验室,天津300384
出 处:《组合机床与自动化加工技术》2022年第2期68-71,75,共5页Modular Machine Tool & Automatic Manufacturing Technique
基 金:天津市自然科学基金项目(17JCTPJC53100)。
摘 要:针对轴承振动信号的冗余信息过多、故障特征提取率较低的问题,提出一种基于鲸鱼算法及综合评价指标优化变分模态分解(VMD)参数的轴承故障特征提取方法。首先构建了一种模糊熵与峭度倒数和的综合评价指标,作为鲸鱼优化算法(WOA)的适应度函数;其次对VMD的相关参数进行寻优;然后使用优化的参数对原始信号进行VMD分解,得到固有模态函数(IMFs),选取模糊熵与峭度倒数和最小的IMF作为目标模态;最后对目标分量进行希尔伯特包络谱分析来提取故障特征。在仿真信号实验和实测数据实验中与传统方法对比,结果表明,鲸鱼算法与综合指标的结合能选取最优VMD分解参数,故障频率提取率较传统方法有所提高。In order to solve the problem of too much redundant information and low fault feature extraction rate of bearing vibration signals,a bearing fault feature extraction method based on whale optimization algorithm(WOA)and comprehensive evaluation index to optimize variational mode decomposition(VMD)parameters is proposed.Firstly,a comprehensive evaluation index of fuzzy entropy and reciprocal of kurtosis is constructed,which is used as the fitness function of WOA to optimize the relevant parameters of VMD.Then the original signal is decomposed by VMD using the optimized parameters,and the intrinsic mode function(IMFs),selects fuzzy entropy and reciprocal of kurtosis and the minimum IMF as target mode.Finally,Hilbert envelope spectrum analysis is used to extract fault features.Compared with the traditional method in the simulation signal experiment and measured data experiment,the results show that the combination of whale algorithm and comprehensive index can select the optimal VMD decomposition parameters,and the fault frequency extraction rate is higher than that of the traditional method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3