COVID-19疫情传播建模分析  

The Prediction of Epidemic Trend of COVID-19

在线阅读下载全文

作  者:余小军 王昌晶[2] 屈文建[3] 左正康[2] 罗海梅[4,5] YU Xiaojun;WANG Changjing;QU Wenjian;ZUO Zhengkang;LUO Haimei(College of Software,East China University of Technology,Nanchang Jiangxi 330013,China;College of Computer Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China;Information Engineering School,Nanchang University,Nanchang Jiangxi 330031,China;College of Physics and Communication Electronics,Jiangxi Normal University,Nanchang Jiangxi 330022,China;Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province,Jiangxi Normal University,Nanchang Jiangxi 330022,China)

机构地区:[1]东华理工大学软件学院,江西南昌330013 [2]江西师范大学计算机信息工程学院,江西南昌330022 [3]南昌大学信息工程学院,江西南昌330031 [4]江西师范大学物理与通信电子学院,江西南昌330022 [5]江西师范大学江西省光电子与通信重点实验室,江西南昌330022

出  处:《江西师范大学学报(自然科学版)》2021年第6期559-565,共7页Journal of Jiangxi Normal University(Natural Science Edition)

基  金:国家自然科学基金(61762049,61862033,11804133);江西省教育厅科学技术研究(GJJ210307)资助项目.

摘  要:当大规模传染性疾病威胁到人类安全时,有效预测其传播趋势是减少疾病对人们伤亡和财产损失的重要措施.该文使用3种方法对2019年新冠肺炎的传播趋势进行建模分析,并以北京市、云南省、江西省为代表预测其传播趋势和确诊人数的峰值.实验结果表明:当使用高阶函数拟合对前期的发展趋势进行建模时,其趋势与真实的疫情最吻合,趋势拟合效果最佳,峰值误差最小.当使用Logistic增长曲线中的S型曲线对前期的发展趋势进行建模时,其趋势与真实的疫情基本吻合,趋势拟合效果次佳,峰值误差次佳.当使用基于动力学传播模型中的SIR模型对前期的发展趋势进行建模时,其趋势与真实的疫情基本吻合,趋势拟合效果在3种方法中最差,峰值误差也最大.When large-scale infectious diseases threaten human beings,effectively predicting the transmission trend is an important measure to reduce people′s casualties or property losses.The novel coronavirus pneumonia epidemic trend in 2019 is modeled and analyzed by three methods,and the trend of transmission and number of confirmed cases are predicted by Beijing,Yunnan and Jiangxi.The results of experiments show that using high-order function fitting to model the development trend in the early stage,the trend is most consistent with the real epidemic situation,the trend fitting effect is the best and the peak error is the smallest.The S-shaped curve in the logistic growth curve is used to model the development trend in the early stage.The trend is basically consistent with the real epidemic situation,the trend fitting effect is the second best,and the peak error is the second best.The SIR model based on the dynamic propagation model is used to model the development trend in the early stage.The trend is basically consistent with the real epidemic situation.The trend fitting effect is the worst among the three methods,and the peak error is also the largest.

关 键 词:SIR模型 高阶函数 牛顿法 Logistic曲线 疾病预测 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象