检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈兵[1] 韩烬阳 唐晓垒 夏搏然 CHEN Bing;HAN Jin-yang;TANG Xiao-lei;XIA Bo-ran(School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出 处:《东北大学学报(自然科学版)》2022年第2期236-242,共7页Journal of Northeastern University(Natural Science)
基 金:中央高校基本科研业务费专项资金资助项目(FRF-GF-19-009B).
摘 要:在冷轧弯曲矫直过程中,针对拉矫机工艺参数设置问题,利用经验公式、有限元仿真建立的延伸率模型预测精度不高.为提高预测精度,基于传统解析模型与机器学习算法进行研究,比较了两种方法预测模型的精度,得到机器学习算法的延伸率预测模型要比数值解析模型的拟合优度高.比较BP神经网络算法和支持向量机(SVM)算法,得到两种机器学习算法的预测模型精度基本一致.为进一步提高预测精度,采用Adam算法对BP神经网络进行优化,采用遗传算法对SVM预测模型的参数进行优化,最终得到最优预测模型的均值绝对百分比误差MAPE以及拟合优度R^(2)分别为13.4%和0.953,可以为实际生产提供技术指导.In the process of cold rolling bending straightening,aiming at the setting of process parameters of tension straightener,the prediction accuracy of elongation models established by empirical formula and finite element simulation is not high.To improve the accuracy,the traditional analytical models and machine learning algorithms are studied.The accuracies of the two methods are compared.It is found that the elongation prediction model of machine learning algorithm has higher goodness of fit(R^(2))than the numerical analytical model.Comparing BP neural network algorithm with SVM(support vector machine)algorithm,the prediction model accuracies of the two machine learning algorithms are basically the same.In order to further improve the prediction accuracy,the BP neural network is optimized by Adam algorithm,and the parameters of SVM prediction model are optimized by genetic algorithm.Finally,the MAPE(mean absolute percentage error)and R^(2) of the optimal prediction model are 13.4%and 0.953 respectively,which can provide technical guidance for actual production.
关 键 词:支持向量机 BP神经网络 延伸率 预测模型优化 冷轧薄板
分 类 号:TG333.2[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222