检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李颀[1] 陈哲豪 LI Qi;CHEN Zhe-hao(School of Electronic Information and Artificial Intelligence,Shaanxi University of Science&Technology,Xi’an 710021,China;School of Electrical and Control Engineering,Shaanxi University of Science&Technology,Xi’an 710021,China)
机构地区:[1]陕西科技大学电子信息与人工智能学院,陕西西安710021 [2]陕西科技大学电气与控制工程学院,陕西西安710021
出 处:《江苏农业学报》2022年第1期119-128,共10页Jiangsu Journal of Agricultural Sciences
基 金:陕西省农业科技创新工程项目[201806117YF05NC13(1)];陕西省科技厅农业科技攻关项目(2015NY028);陕西科技大学博士科研启动基金项目(BJ13-15)。
摘 要:为实现果面缺陷冬枣实时检测,并解决缺陷的尺寸与位置不同影响检测精度的问题,提出一种基于改进单次多目标检测器(Single shot multibox detector,SSD)的果面缺陷冬枣实时检测方法。以陕西大荔冬枣中的虫蛀、轮纹和木质化3种缺陷果和正常果为研究对象,在数据采集设备下采集实际分拣图像,然后通过数据增强由400张扩充至2000张。改进SSD,建立MobileNetV3-SSD模型,为实时检测奠定基础;引入改进感受野块(RFB)可实现模型多尺寸提取冬枣缺陷特征的能力;用空间注意力模块(SAM)代替挤压和激励通道注意力模块(SE)增强模型定位冬枣缺陷特征的能力。试验结果表明,本研究模型在果面缺陷冬枣数据集上的表现均优于目前先进目标检测网络模型(RetinaNet和EfficientDet-D0),该模型对4类冬枣的整体检测精准性(mAP)达到91.89%,检测速度达到1 s 40.85帧。因此本研究模型较好地平衡了实时性和精准性,可应用于果面缺陷冬枣分拣流水线。In order to realize the real-time surface defect detection of winter jujube and solve the problems that different sizes and positions affected the detection accuracy,a real-time surface defect detection method of winter jujube based on improved single shot multibox detector(SSD)was proposed.Three kinds of defective winter jujubes(worm,wheel-pattern and lignification)and normal winter jujubes from Dali(Shaanxi province)were taken as the research objects.The actual sorting images were collected by data acquisition equipment,and then expanded from 400 to 2000 by data enhancement.The SSD was improved,and MobileNetV3-SSD model was established to lay the foundation for real-time detection.The introduction of improved receptive field block(RFB)could realize the ability of model to extract the defect feature of winter jujube at multiple scales.Spatial attention module(SAM)was used to replace squeeze-and-excitation(SE)block,so the ability of the model to locate the defect feature of winter jujube was enhanced.The test results showed that the performance of the proposed model on the dataset of defective winter jujube was better than the current advanced target detection network models(RetinaNet and EfficientDet-D0).The averall detection accuracy of the model for four types of winter jujube was 91.89%,and the detection speed was 40.85 frames per second.Therefore,the model established in this study can balance the real-time performance and accuracy,and can be applied to sorting pipeline of winter jujube with surface defect.
关 键 词:冬枣 果面缺陷 实时检测 单次多目标检测器 多尺寸 空间注意力模型
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.18.103.55