检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱冲 常冬霞[1,2] QIAN Chong;CHANG Dongxia(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;Institute of Information Science,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044 [2]北京交通大学信息科学研究所,北京100044
出 处:《计算机工程与应用》2022年第5期232-239,共8页Computer Engineering and Applications
基 金:中央高校基本科研业务费专项资金(2018JBZ001)。
摘 要:从噪声图像中恢复干净的图像是对图像进行有效处理与分析的首要前提之一,而去除噪声的同时保持图像的特征则是图像去噪的一个具有挑战性的问题。为了在去除噪声的同时尽量保持图像的局部结构特征,提出了一种基于图拉普拉斯正则化稀疏变换学习的图像去噪算法。通过引入图拉普拉斯正则化对邻域像素进行约束,可以较好地保护相邻像素之间的相关性,从而增强图像的局部平滑性。并且,为了更好地利用图像的非局部信息,在相似图像块度量中引入优化后的稀疏编码,从而寻找到更准确的相似图像块。实验结果表明,无论是在量化指标还是视觉质量上,所提算法均能取得较好的去噪性能。Recovering clean images from noisy images is one of the important premises for effective image processing and analysis.However,preserving the image features is a challenging problem of image denoising.In order to remove the noise and maintain the local geometry structures of the image as much as possible,an image denoising algorithm based on graph Laplacian regularized sparse transform learning is proposed in this paper.By introducing graph Laplacian regularization to constrain the neighborhood pixels,the correlation between adjacent pixels can be better protected and the local smoothness of the image can be enhanced.Moreover,in order to make better use of the non-local information of the image,the optimized sparse coding is introduced into the similarity measurement of the image blocks to find more accurate similar image blocks.Experimental results show that the proposed algorithm can achieve good denoising performance both in quantitative indicators and visual quality.
关 键 词:图像去噪 稀疏变换学习 图拉普拉斯正则化 局部几何结构 图像块匹配
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145