检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵娜 秦琴[1] 马振宇 白建峰[3,4] ZHAO Na;QIN Qin;MA Zhenyu;BAI Jianfeng(School of Resource and Environmental Engineering,Shanghai Polytechnic University,Shanghai 201209,China;University of Birmingham,Birmingham 999020,UK;Institude of Resource Recycling Science and Engineering,Shanghai Polytechnic University,Shanghai 201209,China;Science and Engineering Research Center of Electrical Solid Waste Recycling and Utilization,Shanghai Polytechnic University,Shanghai 201209,China)
机构地区:[1]上海第二工业大学资源与环境工程学院,上海201209 [2]伯明翰大学,伯明翰999020 [3]上海第二工业大学资源循环科学与工程研究所,上海201209 [4]上海第二工业大学电气固废回收利用科学与工程研究中心,上海201209
出 处:《信息与电脑》2021年第24期73-76,80,共5页Information & Computer
基 金:国家重点研发计划项目—社区垃圾源头智能分类与清洁收集技术及装备(2019YFC1906100);上海智能制造协同物流装备工程技术研究中心(项目编号:A10GY21H004-18)。
摘 要:目前,基于神经网络的垃圾分类方法大多利用迁移学习获得较好的性能,然而这些方法存在训练时间长、泛化能力有限的问题。针对上述问题,本文提出一种经典网络结合极限学习机的级联网络模型应用于垃圾分类。首先,分别采用VGG19、ResNet18网络的卷积部分作为主干网络提取垃圾图片特征;其次,使用极限学习机作为分类器进行垃圾分类;最后,进行了极限学习机隐含层结点个数选择和全连接层保留与否的实验。实验结果表明,在大类的办公垃圾分类中,级联网络的训练时间和泛化能力明显优于迁移学习,同时当经典网络去除全连接层后,再结合级联网络分类可以获得更好的分类性能。At present,most of the garbage classification methods based on neural network use transfer learning to obtain better performance.However,these methods have the problems of long training time and limited generalization ability.To solve the above problems,this paper proposes a cascade network model of classical network combined with limit learning machine,which is applied to garbage classification.Firstly,the convolution part of vgg19 and resnet18 networks are used as the backbone network to extract the characteristics of spam images;Secondly,limit learning machine is used as a classifier to classify garbage;Finally,experiments are carried out to select the number of hidden layer nodes and whether the full connection layer is retained or not.The experimental results show that the training time and generalization ability of cascaded network are significantly better than that of transfer learning.At the same time,when the classical network removes the full connection layer,combined with cascaded network classification,better classification performance can be obtained.
关 键 词:垃圾分类 迁移学习 极限学习机 卷积神经网络 隐含层结点数
分 类 号:X705[环境科学与工程—环境工程] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28