检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋飞达[1,2] 陈希 JIANG Feida;CHEN Xi(School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China;School of Mathematics and Shing-Tung Yau Center, Southeast University, Nanjing 211189, China)
机构地区:[1]南京信息工程大学数学与统计学院,江苏南京210044 [2]东南大学数学学院,丘成桐中心,江苏南京211189
出 处:《安徽大学学报(自然科学版)》2022年第2期1-9,共9页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金面上项目(11771214)。
摘 要:考虑两类相关的时间依赖的Hessian商不等式,第一类不等式与平均场博弈论有关,第二类不等式属于抛物型完全非线性不等式.针对这两类不等式,假设全局正的容许解存在,构造两个合适的测试函数,借助Schwarz和Young不等式计算推出矛盾,从而证明了它们的全局正容许解的不存在性.该结果可视作判定这两类不等式全局正容许解不存在性的充分条件.This paper considered two types of time-dependent Hessian quotient inequalities.The first kind of inequality was related to the mean field games theory and the second category of inequality belonged to parabolic fully nonlinear inequality.In order to prove the nonexistence of their entire positive admissible solutions,the existence of entire positive admissible solutions was assumed on the contrary,and two suitable test functions were constructed.With the help of Schwarz’s inequality and Young’s inequality,the contradiction was derived by delicate calculations.The result of this paper could be regarded as sufficient conditions to determine the nonexistence of entire positive admissible solutions to these two inequalities.
关 键 词:Hessian商不等式 全局正解 容许解 非线性抛物方程 不存在性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90