应用深度学习分割光学显微镜下的细胞图像  

Application of Deep Learning in Segmentation of Cell Image by Optical Microscope

在线阅读下载全文

作  者:贾策 曹广福[1,3] 王晓峰[1] 张翔[2] JIA Ce;CAO Guang-Fu;WANG Xiao-Feng;ZHANG Xiang(Guangzhou University,Guangzhou 510006,China;Institute of Biophysics,Chinese Academy of Sciences,Beijing 100101,China;South China Agricultural University,Guangzhou 510642,China)

机构地区:[1]广州大学,广州510006 [2]中国科学院生物物理研究所,北京100101 [3]华南农业大学,广州510642

出  处:《生物化学与生物物理进展》2022年第2期395-400,共6页Progress In Biochemistry and Biophysics

摘  要:目的为了在细胞培养过程中便捷地分析细胞的数目和形态。方法本文将深度学习应用到细胞识别中,实现了一种可以通过普通光学显微镜拍照,并直接在培养皿中进行细胞识别计数的方法。结果通过构建U-Net网络结构,并对贴壁细胞和悬浮细胞图像进行标记训练,来实现贴壁细胞和悬浮细胞的分割计数。同时,用该算法绘制细胞生长曲线以及计算抑制剂的抑制率,以验证该算法的实用性。结论应用深度学习分割光学显微镜下的细胞图像是一种可行的方法。Objective In order to analyze the number and morphology of cells in the process of cell culture conveniently.Methods In this paper, we introduce a cell counting method which can directly count cells in culture dish from images of commercial optical microscope by applying deep learning technology. Results In order to implement cell segmentation and counting, labeling and training is carried out on the image of adherent cells and suspension cells by a U-Net structure network. The cell growth curve is plotted and the inhibition rate of inhibitor is calculated by this algorithm, which shows the practicability of the algorithm. Conclusion It is feasible to do cell segmentation in dish by deep learning method.

关 键 词:深度学习 细胞分割 

分 类 号:Q6[生物学—生物物理学] O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象