考虑量化的多智能体系统数据驱动双向一致性控制  被引量:1

Data-driven bipartite consensus control for multi-agent systems with data quantization

在线阅读下载全文

作  者:赵华荣 彭力 于洪年 沈奕宏 ZHAO Hua-rong;PENG Li;YU Hong-nian;SHEN Yi-hong(Research Center of Engineering Applications for IOT,Jiangnan University,Wuxi Jiangsu 214122,China;Jiangsu Province Internet of Things Application Technology Key Construction Laboratory,Wuxi Taihu College,Wuxi Jiangsu 214064,China;School of Englneering and the Built Environment,Edinburgh Napier University,Edinburgh EH105DT,United Kingdom)

机构地区:[1]江南大学物联网应用技术教育部工程中心,江苏无锡214122 [2]无锡太湖学院江苏省物联网应用技术重点建设实验室,江苏无锡214064 [3]爱丁堡龙比亚大学工程与建筑环境学院,英国爱丁堡EH105DT

出  处:《控制理论与应用》2022年第2期336-342,共7页Control Theory & Applications

基  金:国家重点研发项目(2018YFD0400902);国家自然科学基金项目(61873112)资助。

摘  要:针对未知动力学模型非线性离散时间多智能体系统,在信息传递过程中的数据量化问题,以及智能体之间的合作与竞争关系,提出了一种数据驱动控制算法,实现了多智能体系统的双向一致性跟踪控制.首先,利用紧凑形动态线性化(CFDL)方法,将未知动力学模型的非线性智能体转化为含有时变参数的数据模型,并通过设计性能指标函数获得时变参数的估计算法;然后基于该数据模型,利用代数图论和扇形界算法,设计了一种量化数据驱动分布式双向一致性跟踪控制协议,并对其收敛性给出了严格的证明.结果表明,当多智能体系统存在数据量化时,所设计的控制协议仍可以保证双向一致性跟踪误差收敛到0.最后,通过仿真实验和对比实验,进一步验证了该控制协议的有效性和鲁棒性.In this paper, we investigate the data quantization problem of an unknown dynamics model of nonlinear discrete-time multi-agent systems(MASs) with collaborative and antagonistic relationships and propose a data-driven control algorithm for MASs to perform bipartite consensus tracking control. We first develop an estimation algorithm of the time-varying parameter by designing a performance index function through transforming the unknown dynamics model nonlinear agent into a data model with a time-varying parameter using the compact form dynamic linearization(CFDL)approach. We then design a quantized data-driven distributed bipartite consensus tracking control protocol based on the data model by employing the algebraic graph theory and the sector-bound approach. We also strictly prove the convergence property of the proposed algorithm. The results show that although the MASs subject to quantized data, the formulated protocol still guarantees the bipartite consensus tracking errors of MASs to converge to zero. Finally, the developed approach’s effectiveness and robustness are further verified through a numerical example and a contrast experiment.

关 键 词:数据驱动控制 多智能体系统 双向一致性控制 量化控制 无模型自适应控制 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象