基于QR-NFGLSTM与核密度估计的风电功率概率预测  被引量:11

PROBABILITY PREDICTION OF WIND POWER BASED ON QR-NFGLSTM AND KERNEL DENSITY ESTIMATION

在线阅读下载全文

作  者:王晓东[1] 鞠邦国 刘颖明[1] 臧彤琳 Wang Xiaodong;Ju Bangguo;Liu Yingming;Zang Tonglin(School of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China)

机构地区:[1]沈阳工业大学电气工程学院,沈阳110870

出  处:《太阳能学报》2022年第2期479-485,共7页Acta Energiae Solaris Sinica

基  金:国家自然科学基金(51677121;51537007);辽宁省教育厅服务地方项目(LFGD2017009);辽宁省“兴辽英才计划”项目(XLYC1802041)。

摘  要:为提高风电功率概率预测精度和缩短长短期记忆网络的训练时间,提出一种基于分位数回归结合新遗忘门长短期记忆(NFGLSTM)网络与核密度估计的风电功率概率预测方法。该方法对长短期记忆网络的结构改进,提出一种新的遗忘门结构,以缩短训练时间。基于分位数回归和NFGLSTM网络建立组合预测模型,得到风电功率点预测值和某一置信度下的预测区间,采用Cosine核函数的核密度估计求解预测值的概率密度函数。基于某风电场的实测数据的算例分析表明,和传统预测方法相比,该方法可缩短长短期记忆网络的训练时间,提高概率预测精度。This paper proposes a wind power probability prediction method in order to improve the accuracy of wind power probability prediction and reduce the training time of long short-term memory network. This method is based on quantile regression combined with a new forget gate long short-term memory(NFGLSTM)network and kernel density estimation. The structure of long short-term memory network is improved and a new forget gate structure is proposed,which is used to shorten the training time. A combined forecasting model is established based on quantile regression and NGFLSTM network. So,the point prediction value of wind power and the prediction interval under a certain confidence are obtained. The kernel density estimation of the Cosine kernel function is used to solve probability density function of the predicted value. The case study shows that the proposed method can shorten the training time of long and short-term memory networks and improve the probability prediction accuracy.

关 键 词:风电功率 预测 长短期记忆 分位数回归 核密度估计 

分 类 号:TM614[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象