检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾维[1] 尹生阳 张凤[1] Zeng Wei;Yin Shengyang;Zhang Feng(School of Mechanical and Electrical Engineering,Chengdu University of Technology,Chengdu 610051,China)
出 处:《电子测量技术》2021年第23期12-17,共6页Electronic Measurement Technology
基 金:国家重点研发计划项目(2018YFC1505102)资助。
摘 要:针对当前垃圾分拣算法对废旧塑料瓶检测效率低、环境受限和仅限于颜色识别等问题,提出了一种有效的垃圾塑料瓶识别与定位方法,以采集高像素图像为基础提取原始图片,通过YOLOv3算法的浅层增强特征将图片中目标进行一系列卷积获得不同的特征,并输入各检测分支进行检测,将不同尺度特征图经过K-means聚类算法做锚框处理,利用位置预测实现最终的识别与定位检测结果。通过模型测试,YOLOv3算法在识别速度和算法的繁琐性上都优于其他的一些算法,平均识别准确率达到90%、检测时间约0.4 s以内、定位精度约±5 cm。证明了此算法对于复杂环境下废旧塑料瓶目标检测的有效性和实用性。In view of the low detection efficiency of waste plastic bottles,limited environment and limited color recognition by current waste sorting algorithms,proposes an effective method for identifying and locating waste plastic bottles,which extracts original pictures based on high-pixel images.Through the shallow enhancement feature of the YOLOv3 algorithm,the target in the picture is subjected to a series of convolutions to obtain different features,and each detection branch is input for detection,and the feature maps of different scales are processed by the K-means clustering algorithm as anchor boxes,and the position is used predict to achieve the final recognition and location detection results.Through model testing,the YOLOv3 algorithm is superior to other algorithms in terms of recognition speed and complexity of the algorithm.The average recognition accuracy is 90%,the detection time is within 0.4 s,and the positioning accuracy is about ±5 cm.It proves the effectiveness and practicability of this algorithm for target detection of waste plastic bottles in complex environments.
关 键 词:塑料瓶分类 YOLOv3 K-MEANS聚类 识别速度
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.145.38