检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张苏宁 王芳 朱燕 景栋盛 ZHANG Su-ning;WANG Fang;ZHU Yan;JING Dong-sheng(Suzhou Power Supply Branch, State Grid Jiangsu Electric Power Limited Company, Suzhou 215004, China)
机构地区:[1]国网江苏省电力有限公司苏州供电分公司,江苏苏州215004
出 处:《计算机与现代化》2022年第3期18-22,29,共6页Computer and Modernization
基 金:江苏省高等学校自然科学研究重大项目(17KJA520004)。
摘 要:对多个地区不同形式电力需求进行预测,不仅可以保证各地区电力供给稳定,还可以对全国产生的不同形式电力资源按地区进行合理分配。但目前的方法多针对单地区进行单一时间序列的预测,无法满足能源互联网中对复杂情况的电力需求预测要求。针对此问题,设计一种基于极端梯度提升的跨地区多种类电力需求预测算法。该算法改进提升树方法,有效地防止过拟合,同时通过支持分布式并行的方式,提高训练效率。与其他方法相比,所提方法对训练样本总量和特征数据类型要求不严苛,并可用于多时间序列预测。实验结果表明,所提方法能在可接受误差范围内对各地区不同形式电力需求进行快速、准确的预测。The forecasting of heterogeneous power demands in multiple regions not only ensures the stability of the power supply,but also reasonably distributes heterogeneous power resources produced nationwide.However,existing approaches mainly forecast single time series for single region,which cannot meet the power demand forecasting requirements for complex situations in the energy Internet.To solve the problem,an algorithm based on extreme gradient boosting is designed,which is able to predict the demand of multi-category power over different regions.The proposed algorithm improves the boosting tree method and effectively prevents over fitting.Meanwhile,it also improves the training efficiency by supporting distributed parallelization.Compared with other methods,the proposed method is less stringent on the total amount of training samples and characteristic data types and can be used for multi-time series forecasting.The experimental results show that the proposed algorithm can predict the different types of power demand in different regions quickly and accurately within the acceptable range of error.
关 键 词:能源互联网 电力需求预测 负荷预测 极端梯度提升 多时间序列
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249