基于光谱成像的猪肉新鲜度空间分布预测评价方法  被引量:5

Evaluation of Spectral Imaging-based Spatial Predictions of Freshness Spatial Distribution over Pork

在线阅读下载全文

作  者:赵茂程[1] 吴泽本 汪希伟[1,2] 邢晓阳 陈加新 唐于维一 ZHAO Maocheng;WU Zeben;WANG Xiwei;XING Xiaoyang;CHEN Jiaxin;TANG Yuweiyi(College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China;National-provincial Joint Engineering Research Center of Electromechanical Product Packaging with Biomaterials,Nanjing Forestry University,Nanjing 210037,China)

机构地区:[1]南京林业大学机械电子工程学院,南京210037 [2]南京林业大学机电产品包装生物质材料国家地方联合工程研究中心,南京210037

出  处:《农业机械学报》2022年第3期412-422,共11页Transactions of the Chinese Society for Agricultural Machinery

基  金:国家自然科学基金面上项目(32072498);南京市科技发展计划(农业科技攻关)项目(2015sa213015)。

摘  要:新鲜度指标在像素位置缺乏微观参考值,因此将基于均值光谱的化学计量学模型应用到像素光谱时,无法对指标空间分布预测质量进行直接评价。提出了基于准度和精度的评价方法,以兴趣区域内各像素位置微观预测值的统计均值相对于理化检测值的决定系数和均方根误差作为准度评价指标;根据新鲜度指标的理论允许范围,以TVB-N微观预测值小于零的像素点在兴趣区域内所占比值作为精度评价指标。基于偏最小二乘回归,在可见近红外波段(550~970 nm),分别对全波段、利用连续投影算法精选的20个和6个特征波段建立新鲜度预测模型;采用5种不同带宽的光谱滤波,将滤波前后光谱所得指标空间分布预测结果进行比较。研究表明:经不同光谱预处理及化学计量学模型所得指标空间分布预测结果存在显著差异。尽管光谱均值滤波后像素光谱质量仍低于均值光谱,但指标空间分布预测准度恒等于预测模型本身;指标空间分布预测精度明显受到像素光谱质量及预测模型波段增益值的共同影响,前者占主导作用(R=0.72)。因此,本文的评价方法能够对基于光谱成像的化学计量学指标空间分布预测质量进行评价;利用线性化学计量学算法进行指标空间分布预测准度不会下降;在实践中,可以通过提高像素光谱信噪比和限制模型波段增益提高预测的精度。Since the unavailability of local reference freshness values at individual pixels,a direct validation is impossible for the spatial distribution of pork freshness,i.e.,the freshness maps visualized through applying the chemometric models that are trained on average spectra of regions of interest(ROI)to the spectra at individual pixels within the ROIs.Therefore,a dual-criteria evaluation of the freshness maps that were produced through different chemometric systems coupled with varied spectral filtering on both accuracy and precision was proposed.The former was quantified by the coefficient of determination of prediction(R_(P)^(2))and the root mean square error of prediction between the chemical reference of ROIs and the average of the predictions at all individual pixels therein.The latter was quantified with the ratio of the pixels having negative TVB-N values to those of the ROI for a given subject,since the non-negativity according to the theoretical range of the freshness measurement.A bank of drastically different freshness maps of the same batch of pork were produced by using partial least squares regression(PLSR),over the visual/near infrared spectral range over 550~970 nm,both before and after spectral filtering using ideal average smoothing filters with five different bandwidths of 6 nm,18 nm,30 nm,42 nm,and 54 nm,respectively.The full range of consecutive wavebands,as well as 20 or 6 feature bands which were selected by successive projection algorithm(SPA),were used to form a collection of 18 combinations of bandwidth and the number of spectral bands to build chemometric models.Drastic difference resulted between the 18 approaches to visualization of freshness distribution.Analysis result showed,however,that all freshness maps were of good accuracy,equal to that of the chemometric models despite the lower quality of the spectra at individual pixels,even after spectral filtering,than those used in the training of models.And the precision of spatial predictions of freshness seemed to be co-determined by b

关 键 词:猪肉 新鲜度 空间分布 预测 评价 高光谱图像 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] O657.3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象