随机扰动不同种群变异策略的多目标进化算法  被引量:2

Multi-objective evolutionary algorithm with random disturbance of different population mutation strategies

在线阅读下载全文

作  者:郝秦霞[1,2] 汪连连 Hao Qinxia;Wang Lianlian(School of Communication&Information Engineering,Xi’an University of Science&Technology,Xi’an 710054,China;School of Safety Science&Engineering,Xi’an University of Science&Technology,Xi’an 710054,China)

机构地区:[1]西安科技大学通信与信息工程学院,西安710054 [2]西安科技大学安全科学与工程学院,西安710054

出  处:《计算机应用研究》2022年第4期1092-1098,共7页Application Research of Computers

基  金:教育部产学合作协同与人项目(202101374004)。

摘  要:为了提高多目标优化问题非支配解集的收敛性和多样性,解决算法后期易陷入局部最优的问题,根据不同差分进化策略特点,添加随机扰动,基于改进切比雪夫机制提出了一种自适应差分进化策略的分解多目标进化算法(MOEA/D-ADE-levy)。首先,使用混合水平正交实验产生均匀权重向量并应用于改进切比雪夫机制分解子问题得到均匀分布的初始种群;其次,将种群分为优秀个体、中间个体和较差个体,对不同个体采用不同的变异策略,对变异因子F和交叉概率CR采用自适应机制,提高非支配解集的收敛性和多样性;最后,对陷入局部最优的解集增加Lévy随机扰动,增大其全局搜索的能力,跳出局部最优。采用DTLZ测试函数验证算法有效性,将所提算法与NSGA2、NSGA3、MOEA/D、MOEA/D-DE等常用算法进行比较,使用GD和IGD评价指标对算法进行多样性和收敛性分析,实验结果表明,该算法在收敛性和多样性方面得到了改进与提高,能得到更优的Pareto解集。In order to improve the convergence and diversity of the non-dominated solution set of multi-objective optimization problems,and solve the problem that the algorithm is easy to fall into the local optimum in the later stage,according to the characteristics of different differential evolution strategies,this paper added random disturbances,and proposed a decomposition multi-objective evolution algorithm with adaptive differential evolution strategy based on the improved Chebyshev mechanism(MOEA/D-ADE-levy).Firstly,it used the mixed-level orthogonal experiment to generate uniform weight vectors and applied to improve the Chebyshev mechanism to decompose the sub-problems to obtain a uniformly distributed initial population.Secondly,it divided the population into excellent individuals,intermediate individuals and poor individuals,and used different indivi-duals.The mutation strategy used an adaptive mechanism for the mutation factor F and the crossover probability CR to improve the convergence and diversity of the non-dominated solution set.Finally,it added the Lévy random perturbation to the solution set that fell into the local optimum to increase its global search ability,and jumped out of the local optimum.The DTLZ test function was used to verify the effectiveness of the algorithm.And the proposed algorithm was compared with common algorithms such as NSGA2,NSGA3,MOEA/D,MOEA/D-DE,etc..And the diversity and convergence analysis of the algorithm was performed using GD and IGD evaluation indicators.The results show that the algorithm has been improved and improved in terms of convergence and diversity,and can obtain a better Pareto solution set.

关 键 词:混合水平正交 切比雪夫 自适应差分 局部最优 收敛性 多样性 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象