检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王喜燕[1] 刘亚琳 WANG Xiyan;LIU Yalin(ZhengZhou Railway Vocational and Technical College,Zhengzhou 451460,China)
出 处:《郑州铁路职业技术学院学报》2022年第1期22-25,共4页Journal of Zhengzhou Railway Vocational and Technical College
摘 要:对于铁路客运量预测的准确度问题,本研究提出了基于粒子群(PSO)优化最小二乘支持向量机(LS-SVM)重要参数的方法。以1995—2013年的铁路客运量历史数据作为训练集,2014—2018年的客运量作为测试集,用LS-SVM进行建模和预测。针对模型中参数难以选择问题,采用PSO全局搜索方法,与神经网络和LS-SVM的预测效果作比较,仿真表明,采用PSO优化LS-SVM对铁路客运量建模与预测效果更好,精度更高。For the accuracy of railway passenger volume prediction,this study proposes a method based on particle swarm optimization(PSO) to optimize the important parameters of least square support vector machine(LS-SVM).The historical data of railway passenger volume from 1995 to 2013 is taken as the training set,and the passenger volume from 2014 to 2018 is taken as the test set.lS-SVM is used for modeling and prediction.In view of the difficulty of selecting parameters in the model,the PSO global search method is used to compare the prediction effect with the neural network and LS-SVM.The simulation results show that the lS-SVM optimized by PSO has better modeling and prediction effect and higher accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28