检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘艳杰 陈炳发[1] 丁力平[1] LIU Yanjie;CHEN Bingfa;DING Liping(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
机构地区:[1]南京航空航天大学机电学院,江苏南京210016
出 处:《机械制造与自动化》2022年第2期190-194,共5页Machine Building & Automation
摘 要:针对微电机质量检测水平低、故障识别困难等问题,设计一种基于声学特征的微电机故障诊断方法。通过声音采集装置获得微电机转动时的正常声音信号和三种故障信号;从声音信号中提取39维梅尔频率倒谱系数和短时能量,搭建一维卷积神经网络模型进行识别。将声音信号转化成语谱图,建立二维卷积神经网络模型并识别。利用多模型融合技术中的加权平均算法将两个模型融合,融合后模型的准确率为93.58%,比单个模型平均提高2.43%。A fault diagnosis method based on acoustic characteristics is designed to solve the problems of low quality detection and difficulty in fault identification of needle micro-motor. The normal sound signal and three kinds of fault signals are obtained by sound acquisition device. 39 dimensions Mel frequency cestrum coefficient and short-time energy are extracted from sound signals to built one dimensional convolutional neural network for identification, and the sound signals are transformed into speech spectrum diagram to establish two dimensional convolutional neural network model for identification. The weighted average algorithm in the multi-model fusion technology is applied to fuse the two models with the accuracy of the fused models up to 93.58%, which is 2.43% higher than the single model on average.
关 键 词:声学特征 模型融合 卷积神经网络 微电机 故障诊断
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.18.103.55