基于S-A湍流模型的Runge-Kutta有限元算法  被引量:3

A Runge-Kutta finite element algorithm based on the S-A turbulent model

在线阅读下载全文

作  者:曹鹏程[1] 廖绍凯[1,2] 张研 陈达 CAO Peng-cheng;LIAO Shao-kai;ZHANG Yan;CHEN Da(College of EngineeringArchitecture,Jiaxing University,Jiaxing 314001,China;College of Mechanics and Materials,Hohai University,Nanjing 211100,China;College of Harbour,Coastal and Offshore Engineering,Hohai University,Nanjing 211100,China)

机构地区:[1]嘉兴学院建筑工程学院,嘉兴314001 [2]河海大学力学与材料学院,南京211100 [3]河海大学港口海岸与近海工程学院,南京211100

出  处:《计算力学学报》2022年第2期185-191,共7页Chinese Journal of Computational Mechanics

基  金:国家自然科学基金(51579088;51509081;51779087);教育部产学研项目(201802072007);嘉兴市科技计划项目(2020AD30027);浙江省教育厅一般科研项目(Y202045351)资助项目。

摘  要:采用一方程S-A模型(Spalart-Allmaras模型)封闭雷诺时均N-S方程(RANS方程)进行湍流数值计算,可以减少方程求解数量,节约计算时间。本文对其进行了有限元数值算法研究,首先通过沿流线坐标变换,得到无对流项RANS方程,并引入三阶Runge-Kutta法对其进行时间离散;然后利用沿流线的Taylor展开解决坐标变换带来的网格更新的困难;最后采用Galerkin法进行空间离散,得到湍流模型的有限元算法。基于方柱绕流和覆冰输电线绕流模型,与试验结果进行对比,验证了该算法的有效性,与一阶数值算法相比,该算法在精度和收敛性方面更具优势。In the numerical calculation of turbulence, in order to reduce the number of solved equations and save computational cost, one-equation Spalart-Allmaras model is used to close Reynolds-averaged N-S equation.The research on turbulent numerical algorithm is carried out.Firstly, RANS equation without the convection term is obtained by coordinate transformation along streamlines, and the third-order Runge-Kutta method is introduced to discretize it in time.Then the Taylor expansion along streamlines is used to overcome the difficulty of mesh updating caused by the coordinate transformation.Finally, based on the Galerkin space discretization, the finite element algorithm of turbulence model is obtained.The numerical simulations of flow past a square cylinder and flow past an iced conductor are performed.Compared with the experimental results, the effectiveness of this algorithm is verified.Compared with the first-order algorithms, this algorithm has more advantages in accuracy and convergence.

关 键 词:S-A方程 RANS方程 RUNGE-KUTTA法 有限元 方柱 覆冰输电线 

分 类 号:O242.1[理学—计算数学] O357.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象