检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Donghyun Lee Soonmin Kwon Seok-young Jang Eunyoung Park Yeeun Lee Heebeom Koo
出 处:《Bioactive Materials》2022年第2期20-34,共15页生物活性材料(英文)
基 金:supported by Basic Research Program(2016R1C1B3013951,2021R1F1A1061286,and 2021R1A4A3031875)through the National Research Foundation of Korea(NRF)funded by the Korean government(Ministry of Science,ICT,and Future Planning).
摘 要:Photodynamic therapy(PDT)has been applied in clinical treatment of tumors for a long time.However,insufficient supply of pivotal factors including photosensitizer(PS),light,and oxygen in tumor tissue dramatically reduces the therapeutic efficacy of PDT.Nanoparticles have received an influx of attention as drug carriers,and recent studies have demonstrated their promising potential to overcome the obstacles of PDT in tumor tissue.Physicochemical optimization for passive targeting,ligand modification for active targeting,and stimuli-responsive release achieved efficient delivery of PS to tumor tissue.Various trials using upconversion NPs,two-photon lasers,X-rays,and bioluminescence have provided clues for efficient methods of light delivery to deep tissue.Attempts have been made to overcome unfavorable tumor microenvironments via artificial oxygen generation,Fenton reaction,and combination with other chemical drugs.In this review,we introduce these creative approaches to addressing the hurdles facing PDT in tumors.In particular,the studies that have been validated in animal experiments are preferred in this review over proof-of-concept studies that were only performed in cells.
关 键 词:Photodynamic therapy NANOPARTICLE TUMOR-TARGETING Drug delivery Tissue penetration
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68