检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王治飞 于俊朋[1,2] 孙晶明[1,2] 张强[1,2] 杨予昊[1,2] WANG Zhifei;YU Junpeng;SUN Jingming;ZHANG Qiang;YANG Yuhao(Nanjing Research Institute of Electronics Technology,Nanjing 210039,China;Key Laboratory of IntelliSense Technology,CETC,Nanjing 210039,China)
机构地区:[1]南京电子技术研究所,南京210039 [2]中国电子科技集团公司智能感知技术重点实验室,南京210039
出 处:《现代雷达》2022年第3期18-23,共6页Modern Radar
摘 要:宽带高分辨雷达较窄带雷达可获得更多的目标和环境信息,且可更精确地测量目标的位置和运动参数,同时也具有更好的低截获性能。但目标在宽带波形下通常表现为扩展目标,基于点目标假设的传统的信噪比阈值检测方法难以充分利用扩展目标的回波特性。因此,文中提出了基于支持向量机和卷积神经网络两种机器学习方法的海面扩展目标检测器。通过建立仿真平台生成样本数据,对两种机器学习模型进行了训练和测试。阈值检测、支持向量机和卷积神经网络三种方法的检测性能曲线的对比展现了两种基于机器学习方法在海面扩展目标检测上的优势。实测场景的测试进一步表现出卷积神经网络能有效提升点迹质量,从而有利于提升航迹质量,也表明了采用仿真生成的样本数据集对应用于海面扩展目标检测的机器学习模型进行训练和验证的有效性。Compared to narrow-band radars, high-resolution wide-band radars obtain more information of targets and environment, measure the location and movement parameters more accurately, and achieve lower probability of interception. However, targets are typically presented as distributed targets when their dimensions are greater than radars′ resolution. This invalidates the presumption of point targets in the traditional threshold detection method, and makes it difficult to make full use of the characteristics of distributed targets. Therefore, this work investigates the distributed sea-surface target detection based on two machine learning(ML) approaches, i.e. supporting vector machine and convolutional neural network(CNN). The machine learning models are trained and tested with the synthetic data generated by the established simulation platform. The comparison of receiver operating characteristics curves illustrates the advantages of two ML methods over threshold detection. The evaluation with measured data further highlights that CNN can improve the detection performance, helping to gain better track result than threshold detection. Furthermore, this work also demonstrates that machine learning models can be trained and validated by simulated data for the distributed sea-surface target detection.
关 键 词:海面扩展目标 宽带信号 卷积神经网络 支持向量机 机器学习
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145