检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘春松 宋伟[1] 罗印升[1] 李峰 LIU Chunsong;SONG Wei;LUO Yinsheng;LI Feng(Jiangsu University of Technology,Changzhou Jiangsu 213000,China)
机构地区:[1]江苏理工学院,江苏常州213001
出 处:《激光杂志》2022年第3期92-97,共6页Laser Journal
基 金:江苏省基础研究计划项目(No.BK20191035)。
摘 要:为了剔除点云中离散点噪声和密集平面噪声且保留点云的特征,提出了一种改进的具有半径滤波和RANSAC优点的点云图像去噪新方法。首先利用体素下采样对原始点云数据进行精简,然后针对离散点噪声,使用半径滤波将其剔除,最后在保留原始RANSAC算法的基础上,引入高度信息参数对拟合出的平面进行区分,据此进一步剔除点云中的密集平面噪声。实验结果表明,经过本方法去噪后SNR比传统方法和新方法处理后的分别高出152.94%和79.17%;同时本方法在运行时间上也分别快了96.27%和98.56%。In order to eliminate discrete point noise and dense plane noise in point cloud and retain its characteristics, this paper proposes an improved point cloud image denoising method with the advantages of radius filtering and RANSAC. Firstly, the voxel downsampling is used to streamline original point cloud data, and then the radius filtering is used to eliminate discrete point noise. Finally, on the basis of retaining original RANSAC algorithm, the height information parameter is introduced to distinguish the fitted planes. Accordingly, the dense plane noise in point cloud is further eliminated. The experimental results show that the SNRs after denoising by this method are152.94% and 79.17% higher than these of traditional method and new method, respectively. At the same time, the running time of the method is 96.27% and 98.56% faster respectively.
分 类 号:TN209[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3