基于非线性模型的无人驾驶车辆路线修正算法  被引量:1

Route correction algorithm of driverless vehicle based on nonlinear model

在线阅读下载全文

作  者:江深[1] 张海兰 JIANG Shen;ZHANG Hai-lan(School of Mechanical Electrical Engineering,Guangdong University of Science&Technology,Dongguan Guangdong 523000,China;School of Mechanical Electronic and Information Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China)

机构地区:[1]广东科技学院机电工程学院,广东东莞523000 [2]中国矿业大学(北京)机电与信息工程学院,北京100083

出  处:《计算机仿真》2022年第2期88-92,共5页Computer Simulation

摘  要:传统无人驾驶车辆转向位移偏差修正算法忽略了对车辆运动模型的转换,转向角获取出现误差,导致传统算法存在抗干扰能力不理想和修正精度偏低问题。为此提出基于非线性模型的无人驾驶车辆转向位移偏差修正算法。构建车辆运动模型,得到车辆在行驶过程中产生的各种速度值,将车辆运动模型转换为状态空间形式。以此获得车辆转向控制中的转向角,并与正常数据对比得到转向偏移误差。通过将最小二乘法与误差平方和最小原则相结合得到转向位移偏差修正模型,以此实现对无人驾驶车辆的转向误差修正。实验验证了所提算法较大程度的优化了抗干扰能力和修正精度,对无人驾驶车辆的进一步研究提供了参考依据。The lack of vehicle model conversion causes large steering angle error, poor anti-interference ability and low correction accuracy of driverless vehicle steering displacement deviation correction algorithm. Therefore, a steering displacement deviation correction algorithm for driverless vehicles based on a nonlinear model is proposed in this paper. In order to obtain the steering angle in vehicle steering control and obtain the steering offset error compared with the normal data, the vehicle motion model was established to obtain various speed values generated by the vehicle during driving, thus converting the vehicle motion model to the state space form. The steering displacement deviation correction model was obtained by combining the least square method with the principle of minimum sum of squares of errors. Finally, the steering error correction of the driverless vehicle was achieved. The results show that the algorithm significantly improves the anti-interference ability and correction accuracy, and provides a valuable reference for the field of unmanned vehicles.

关 键 词:无人驾驶车辆 转向位移偏差 最小二乘法 误差修正 横摆角速度 

分 类 号:TP182.3[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象