基于深度多特征融合的CNNs图像分类算法  被引量:6

A CNNs Image Classification Algorithm Based on Deep Fusion of Multi-Features

在线阅读下载全文

作  者:李伟 黄鹤鸣[1,2] 张会云[1,2] 杨鸿海 LI Wei;HUANG Heming;ZHANG Hui-yun;YANG Hong-hai(School of Computer Science and Technology,Qinghai Normal University,Xining Qinghai 810008,China;Key laboratory of Tibetan information Processing,Ministry of Education,Xining Qinghai 810008,China;Provincial Geomatics Center of Qinghai,Xining,Qinghai 810001,China)

机构地区:[1]青海师范大学计算机学院,青海西宁810008 [2]藏文信息处理教育部重点实验室,青海西宁810008 [3]青海省地理信息中心,青海西宁810001

出  处:《计算机仿真》2022年第2期322-326,共5页Computer Simulation

基  金:青海省自然科学基金(2016-ZJ-904);国家自然科学基金(61462072,61662062)。

摘  要:近年来,卷积神经网络在图像处理方面的良好性能得到了广泛关注。为了更好地提取图像内容信息,提高图像分类精度,提出了一种基于深度多特征融合的CNNs图像分类算法。算法有效深度融合了图像的多种特征,即使用k-means++聚类算法提取的主颜色特征和利用去噪卷积神经网络提取的空间位置特征。实验结果表明,提出的基于深度多特征融合的CNNs图像分类算法在图像分类方面提供了有竞争力的结果,分类精度比CNN提升了7个百分点。该算法通过深度融合图像的多种特征,可为后续图像处理提供更全面更显著的有用信息。In recent years, the good performance of convolutional neural network in image processing has been widely concerned. In order to better extract image content information and improve image classification accuracy, a CNNs image classification algorithm based on deep fusion of multi-features is proposed. In this algorithm, the main color features extracted by k-means++clustering algorithm and the spatial position features extracted by the deconvolution neural networks are effectively fused. The experimental results show that the proposed CNNs image classification algorithm based on deep fusion of multi-features provides competitive results in image classification, and the classification accuracy is 7% higher than that of CNN;The algorithm can provide more comprehensive and significant useful information for the subsequent image processing by deeply fusing various features of the image.

关 键 词:卷积神经网络 多特征 主颜色 数据融合 图像分类 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象