检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:敖宇翔 滕少华[1] 张巍[1] 滕璐瑶 AO Yu-xiang;TENG Shao-hua;ZHANG Wei;TENG Lu-yao(School of Computer,Guangdong University of Technology,Guangzhou 510006,China;Monash University,Melbourne 3800,Australia)
机构地区:[1]广东工业大学计算机学院,广州510006 [2]Monash University,Melbourne 3800,Australia
出 处:《小型微型计算机系统》2022年第5期998-1005,共8页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61972102)资助;广东省重点领域研发计划项目(2020B010166006)资助;广东省教育厅项目(粤教高函[2018]179号,粤教高函[2018]1号)资助;广州市科技计划项目(201903010107,201802030011,201802010026,201802010042,201604046017)资助。
摘 要:跨模态哈希检索以其存储消耗低、检索效率高引起广泛关注.现有研究仍存在如何保持标签语义和语义信息损失问题.为此,本文提出了一种新颖的标签结构保持离散哈希方法LSPDH(Label Structure Preserving Discrete Hashing),该方法将哈希学习分为哈希码学习和哈希函数学习两步.哈希码学习中,不同于其他使用流形学习提取多模态数据特征的方法,本文方法则运用流形学习提取标签信息的局部结构并在汉明空间中保持,同时将标签信息映射到哈希码矩阵,融入哈希码学习过程,来降低构建流形相似度矩阵所造成的语义信息损失;哈希函数学习中使用了核函数来获取数据间的非线性关系.最后,通过三个基准数据集上与近期跨模态哈希方法对比实验,验证了提出方法的有效性.Cross-modal hashing attracted many people′s attention in cross-modal retrieval due to its characteristics of low storage consumption and high retrieval efficiency.However,many existing methods still have problems of how to preserve label semantic and reduce semantic information loss.To address these issues,a novel method LSPDH(Label Structure Preserving Discrete Hashing)is proposed in this paper,LSPDH is divided into two steps:hash codes learning and hash functions learning.In hash codes learning,different from other methods that use manifold learning to extract multimodal data features,LSPDH leverages the manifold learning to preserve the local structure of label information into the Hamming space,meanwhile the label information is mapped to the hash codes and integrated into the hash codes learning process to reduce the semantic information loss caused by the construction of the manifold similarity matrix.In hash function learning,kernel function is used to catch the nonlinear relationship between data.The experimental results on LSPDH and several state-of-the-art cross-modal hashing methods on three benchmark datasets demonstrate the effectiveness of LSPDH.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43