基于异步交互聚合网络的港船作业区域人员异常行为识别  被引量:6

Detecting Abnormal Behaviors of Workers at Ship Working Fields via Asynchronous Interaction Aggregation Network

在线阅读下载全文

作  者:陈信强 郑金彪 凌峻 王梓创 吴建军[2] 阎莹[3] CHEN Xinqiang;ZHENG Jinbiao;LING Jun;WANG Zichuang;WU Jianjun;YAN Ying(Institute of Logistics Science and Engineering,Shanghai Maritime University,Shanghai 201306,China;Merchant Marine College,Shanghai Maritime University,Shanghai 201306,China;School of Transportation Engineering,Chang'an University,Xi'an 710064,China)

机构地区:[1]上海海事大学物流科学与工程研究院,上海201306 [2]上海海事大学商船学院,上海201306 [3]长安大学运输工程学院,西安710064

出  处:《交通信息与安全》2022年第2期22-29,共8页Journal of Transport Information and Safety

基  金:国家重点研发计划项目(2019YFB1600602);国家自然科学基金项目(52102397、51978069);陕西省重点研发计划项目(2021KWZ-09);中国博士后科学基金项目(2021M700790)资助。

摘  要:港船作业区域人员的异常行为识别可为智能航运的管控与决策提供重要数据支撑,有利于推动智慧港口和智能船舶的发展。基于异步交互聚合网络开展了面向港船工作环境下的人员异常行为识别研究。基于YOLO模型对港船图像进行卷积操作,利用特征金字塔优化卷积结果得到图像序列中每一帧的人员位置,结合联合学习检测和嵌入范式输出港船图像序列中的人、物体特征信息以及时序信息;利用异步交互聚合网络中的交互聚合结构更新特征池的多维度特征信息,以识别港区与船舶工作环境下的人员异常行为。实验结果表明:提出的港船作业区域人员异常行为识别方法的平均识别精度为91%,在港区工作环境下的人员异常行为识别精度为85%,在船舶驾驶台环境下,提出的异常行为识别框架对船员的不安全行为识别精度达到97%。所提出的识别框架在不同港船作业区域环境中都能获得较好的精度,验证了其有效性和可靠性。Identify abnormal behaviors of workers at ship working fields provides important information for intelligent shipping management and decision-making, which is conducive to promoting the development of smart ports and intelligent ships. To achieve this, an abnormal behavior recognition framework is proposed based on a novel asynchronous interaction aggregation(AIA) model. The proposed model implements the convolution operation on the maritime surveillance videos by using the YOLO algorithm. The convolution results are optimized using the feature pyramid to locate the human in each image. A method of joint learning of detection and an embedding model are then integrated to extract the spatial-temporal features of workers and objects. Furthermore, the proposed AIA model utilizes an interaction aggregation module that update multi-dimensional feature information in the feature pool to detect abnormal behaviors of workers at ship working fields. The results show that the average recognition accuracy of the proposed method is 91%, and the recognition accuracy is 85% at the working fields. For the ship bridge monitoring, the recognition accuracy of unsafe behaviors of crews can reach up to 97%. Based on its validity and reliability, the proposed framework can achieve good accuracy in a variety of ship working fields.

关 键 词:交通工程 自动化码头 智能船舶 异步交互聚合网络 YOLO模型 异常行为识别 

分 类 号:U697.33[交通运输工程—港口、海岸及近海工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象