脉冲离散Ginzburg-Landau方程组的统计解及其极限行为  

Statistical Solutions and Its Limiting Behavior for the Impulsive Discrete Ginzburg-Landau Equations

在线阅读下载全文

作  者:赵才地[1] 姜慧特 李春秋 Tomas Caraballo Zhao Caidi;Jiang Huite;Li Chunqiu;Tomas Caraballo(Department of Mathematics,Wenzhou University,Zhejiang Wenzhou 325035;Departmento de Ecuaciones Diferenciales y Andlisis Numerico,Facultad de Mathmdticas,Universidad de Sevilla,c/Tarfia s/n,41012-Sevilla,Spain)

机构地区:[1]温州大学数理学院,浙江温州325035 [2]塞维利亚大学数学系,西班牙塞维利亚41012

出  处:《数学物理学报(A辑)》2022年第3期784-806,共23页Acta Mathematica Scientia

基  金:国家自然科学基金(11971356);浙江省自然科学基金(LY17A010011)~~。

摘  要:该文研究脉冲离散Ginzburg-Landau方程组的统计解及其极限行为.文章首先证明该脉冲离散方程组的全局适定性,接着证明由解算子生成的过程存在拉回吸引子和一族Borel不变概率测度,然后给出该脉冲离散方程组统计解的定义并证明其存在性.该文的结果揭示了脉冲系统的统计解只分段地满足Liouville型定理.最后,文章证明了脉冲离散Ginzburg-Landau方程组的统计解收敛于脉冲离散Schr?dinger方程组的统计解.In this article we first prove the global well-posedness of the impulsive discrete Ginzburg-Landau equations.Then we establish that the generated process by the solution operators possesses a pullback attractor and a family of invariant Borel probability measures.Further,we formulate the definition of statistical solution for the addressed impulsive system and prove the existence.Our results reveal that the statistical solution of the impulsive system satisfies merely the Liouville type theorem piecewise,which implies that the Liouville type equation for impulsive system will not always hold true on the interval containing any impulsive point.Finally,we prove that the statistical solution of the impulsive discrete Ginzburg-Landau equations converges to that of the impulsive discrete Schr?dinger equations.

关 键 词:统计解 脉冲微分方程 LIOUVILLE型定理 离散耦合Ginzburg-Landau方程 离散Schrodinger方程 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象