未知环境下群机器人多目标搜索协同控制  被引量:9

Multi-target search of swarm robots cooperative control in an unknown environment

在线阅读下载全文

作  者:王茂 周少武[1] 张红强[1] 吴亮红[1] 周游[1,2] 何昕杰 WANG Mao;ZHOU Shao-wu;ZHANG Hong-qiang;WU Liang-hong;ZHOU You;HE Xin-jie(College of Information and Electrical Engineering,Hunan University of Science and Technology,Xiangtan Hunan 411201,China;Hunan Vocational Institute of Technology,Xiangtan Hunan 411206,China)

机构地区:[1]湖南科技大学信息与电气工程学院,湖南湘潭411201 [2]湖南理工职业技术学院,湖南湘潭411206

出  处:《控制理论与应用》2022年第4期750-760,共11页Control Theory & Applications

基  金:国防基础科研计划项目(JCKY2019403D006);湖南省自然科学基金项目(2021JJ30280);湖南省教育厅优秀青年项目(19B200);湖南科技大学博士科研启动基金项目(E56126)资助。

摘  要:未知环境下,群机器人无法预先获取多目标搜索的环境信息,仅可局部感知与局部通信.本文针对避障效率与搜索效率的缺陷提出边界扫描的避障策略和目标位置估计的粒子群算法,边界扫描的避障策略(BSOA)将障碍物简化成连续障碍物与非连续障碍物两种情况,并根据情况向特定边界运动;目标位置估计的粒子群算法(TPEPSO)则利用获取的目标信号估计目标位置,结合粒子群算法到达目标附近,从而实现目标搜索.提出的方法与基于简化虚拟受力分析模型的循障避碰方法(SVF)及扩展粒子群算法(EPSO)、自适应机器人蝙蝠算法(ARBA)仿真比较,搜索效率提高5.72%~21.58%,总能耗减少4.30%~19.11%.In an unknown environment,the swarm robots have no access to obtain the environment information of multi-target search in advance,and their capabilities of sense and communication are limited.Aiming at improving the efficiency of multi-target search and obstacle avoidance,a boundary scan obstacle avoidance strategy(BSOA)and a target position estimation particle swarm optimization(TPEPSO)are proposed in this paper.The former simplifies obstacles into two types:continuous obstacles and discontinuous obstacles,and provides useful guides for the robots to move towards different boundaries based on specific situation.The latter is applied to estimate the target positions with the accessible signals,then the combination of the received information and the PSO helps to approach the targets successfully,which is the realization of target search.As simulated in this paper,the searching efficiency has been increased by 5.72%~21.58%,and the total energy consumption has been reduced by 4.30%~19.11%,according to the comprehensively comparison between the two and three other methods:the simplified virtual-force obstacle avoidance method(SVF),the extended particle swarm optimization(EPSO)and the adaptive robot bat algorithm(ARBA).

关 键 词:群机器人学 群体智能 多目标搜索 边界扫描避障策略 目标位置估计 粒子群算法 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP273[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象