检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚莉娟 马巧珍 Li Juan YAO;Qiao Zhen MA(College of Mathematics a/nd Statistics,Northwest Normal University,Lanzhou 730070,P.R.China)
机构地区:[1]西北师范大学数学与统计学院,兰州730070
出 处:《数学学报(中文版)》2022年第3期499-512,共14页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助项目(11961059;11761062)。
摘 要:利用Faedo-Galerkin方法获得了问题弱解和强解的存在唯一性及解对初值的连续依赖性,并运用有界吸收集的存在性刻画了与问题相关的动力系统(X_(0),S(t))的耗散性.当非线性阻尼项|u_(t)|^(p)u_(t)中的p>0时,证明了动力系统(X_(0),S(t))的渐近光滑性;而当p=0时,得到了动力系统(X_(0),S(t))的拟稳定性.基于上面的结论,获得了具有多项式阻尼项和多项式非线性项的基尔霍夫型吊桥方程有限维全局吸引子和广义指数吸引子的存在性.本文推广和部分改进了以往的一些结果.We first obtain the existence and uniqueness of the both weak and strong solutions by using the Faedo-Galerkin method,as well as the continuous dependence on initial values.Then the existence of a bounded absorbing set is used to characterize the dissipativity of the dynamical system(X_(0),S(t))associated with the problem.Next the asymptotic smoothness of the dynamical system(X_(0),S(t))is demonstrated when p>0 in the nonlinear damping term |u_(t)|^(p)u_(t);and while p=0 we get the quasi-stability of(X_(0),S(t)).Finally,based on the above conclusions,we achieve the existence of the finite dimensional global attractor and the generalized exponential attractor for Kirchhoff type suspension bridge equations with polynomial damping and polynomial nonlinearity.We extend and partially improve the results of published theses before in this paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120