季节指数改进的PM_(2.5)质量浓度组合预测模型研究  被引量:2

PM_(2.5) Concentration Improving Prediction Modeling of Seasonal Index

在线阅读下载全文

作  者:曾江毅 李志生[1] 欧耀春 金宇凯 Zeng Jiang-yi;Li Zhi-sheng;Ou Yao-chun;Jin Yu-kai(School of Civil and Transportation Engineering,Guangdong University of Technology,Guangzhou 510006,China)

机构地区:[1]广东工业大学土木与交通工程学院,广东广州510006

出  处:《广东工业大学学报》2022年第3期89-94,共6页Journal of Guangdong University of Technology

基  金:广东省自然科学基金资助项目(2016A030313711,S2011040003755)。

摘  要:随着我国的经济和城市化迅速发展,PM_(2.5)主导的区域空气污染已成为紧迫、突出的环境问题。据相关研究表明,PM_(2.5)在不同季节质量浓度差异较大。根据广州市2015~2019年的PM_(2.5)月均质量浓度数据,结合大气污染物及气象因素,引入季节指数,建立预测PM_(2.5)质量浓度的改进多元线性回归和多层感知器组合预测模型,探析广州市大气污染物中PM_(2.5)质量浓度的变化规律。结果表明,用季节指数改进的组合预测模型对PM_(2.5)质量浓度进行预测分析,拟合结果良好。使用不同评价指标将组合模型与传统的多层感知器预测模型和多元线性回归模型进行对比,该组合模型的均方根误差(Root Mean Square Error,RMSE)、平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)、平均绝对误差(Mean Absolute Error,MAE)分别比多层感知器模型减少了23.1%、31%、24.2%;比多元线性回归模型减少了35.3%、41.3%、41%。该模型精度均优于传统的多元线性回归模型和多层感知器模型,能更好地预测环境PM_(2.5)质量浓度,为优化环境提供参考。In recent years, China’s economy and urbanization have developed rapidly, and the development of cities often comes at the expense of the environment. Regional air pollution dominated by PM_(2.5)has become the most pressing and prominent environmental problem in China. According to relevant studies, PM_(2.5)concentrations vary greatly in different seasons. Based on the PM_(2.5)monthly mean concentration data of Guangzhou from 2015 to 2019 combined with atmospheric pollutants and meteorological factors, with the seasonal index introduced, an improved multiple linear regression and multi-layer perceptual combination prediction model for PM2.5 concentration is established, to analyze the variation law and future development trend of PM_(2.5)concentration in Guangzhou. The results show that the combined prediction model with the improved seasonal index is used to predict and analyze PM2.5, and the fitting results are good. Compared with the multi-layer perceptron prediction model by using different evaluation indexes, the RMSE(Root Mean Square Error), MAPE(Mean Absolute Percentage Error) and MAE(Mean Absolute Error) of the combined model are reduced by 23.1%, 31% and 24.2% . Compared with the multiple linear regression model, the reduction is 35.3%, 41.3% and 41% . The accuracy of the model is better than the traditional multiple linear regression model and multi-layer perceptron model, which can better predict environmental PM_(2.5)concentration and provide reference for optimizing the environment.

关 键 词:PM_(2.5)质量浓度预测 多元线性回归 多层感知器 神经网络 

分 类 号:X831[环境科学与工程—环境工程] X513

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象