检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仲国民[1] 俞其乐 陈强[1] ZHONG Guomin;YU Qile;CHEN Qiang(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出 处:《电子与信息学报》2022年第5期1610-1616,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(62073291,62973274)。
摘 要:针对有限区间哈默斯坦(Hammerstein)非线性时变系统,该文提出一种加权迭代学习算法用以估计系统时变参数。首先将Hammerstein系统输入非线性部分进行多项式展开,采用迭代学习最小二乘算法辨识系统的时变参数。为了防止数据饱和,采用带遗忘因子的迭代学习最小二乘算法,进而引入权矩阵,采用加权迭代学习最小二乘算法改进系统跟踪误差,以提高辨识精度。该文分别给出3种算法的推导过程并进行仿真验证。结果表明,与迭代学习最小二乘算法和带遗忘因子迭代学习最小二乘算法相比,加权迭代学习最小二乘算法具有辨识精度高、跟踪误差小以及迭代次数少等优点。For Hammerstein nonlinear time-varying systems running repeatedly on finite intervals,a weighted iterative learning algorithm is proposed to estimate the time-varying parameters involved in the system dynamics.The nonlinear input part of the Hammerstein system is tackled based on polynomial expansion,and the iterative learning least square algorithm is given for the time-varying parameter identification.In order to prevent data saturation,an iterative learning least squares algorithm with forgetting factor is proposed for reducing the system tracking error and improving the identification accuracy;A weighted iterative learning least squares algorithm is further presented by introducing the weight matrix.The derivations of the three algorithms are given in detail.The simulation results demonstrate the effectiveness of the proposed learning algorithms,and in comparison with iterative learning least squares algorithm,the modified one sreach high identification accuracy and need fewer iterations.
关 键 词:加权迭代学习辨识 时变参数 哈默斯坦模型 最小二乘算法
分 类 号:TN911.7[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170