基于DAM和CNN-LSTM的辅助动力装置性能参数预测模型  

Prediction Model of Auxiliary Power Unit Performance Parameter Based on DAM and CNN-LSTM

在线阅读下载全文

作  者:王力[1] 马宪 WANG Li;MA Xian(Vocation and Technical College,Civil Aviation University of China,Tianjin 300300,China;College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学职业技术学院,天津300300 [2]中国民航大学电子信息与自动化学院,天津300300

出  处:《计算机测量与控制》2022年第5期55-61,共7页Computer Measurement &Control

基  金:国家自然科学基金民航联合基金(U1733119)。

摘  要:针对辅助动力装置(APU,auxiliary power unit)性能参数难以准确预测的问题,提出一种基于特征与时序的双阶段注意力机制(DAM,dual-stage attention mechanism)和卷积神经网络(CNN)-长短期记忆网络(LSTM)的混合模型;所提的方法在特征提取阶段加入了通道注意力机制(CAM,channel attention mechanism);输出阶段加入了时序注意力机制(TAM,temporal attention mechanism),加强了CNN对重要特征的提取能力和历史关键信息对预测输出的影响,并利用改进的粒子群算法对模型关键参数寻优,提高预测精度;实验结果表明,所提出的新方法在多变量输入和多步长的APU排气温度(EGT,exhaust gas temperature)预测中均取得了很好的效果,预测精度大幅提高。In order to solve the handicap that the performance parameters of auxiliary power unit(APU)are hard to accurately forecast,a hybrid model of dual-stage attention mechanism(DAM)and CNN(convolutional neural network)-LSTM(long short-term memory)based on characteristic and temporal is proposed.A channel attention mechanism is obtained in the characteristic extraction phase and joined a temporal attention mechanism in the output phase.The ability for CNN is enhanced to extract important characteristics.The influence of key information from historical moments on the prediction output was enhanced simultaneously.In order to improve the accuracy of prediction,the improved pso algorithm was used to optimize the hyper parameters of the LSTM network.The proposed method has extremely low errors in the prediction of APU exhaust gas temperature(EGT)with multi-variable input and multi-step length,and the experimental results show that the accuracy of predition is significantly improved.

关 键 词:辅助动力装置 性能参数预测 双阶段注意力机制 长短期记忆网络 排气温度 粒子群算法 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象